Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Neuroscience

Energy As A Limiting Factor In Neuronal Seizure Control: A Mathematical Model, Sophia E. Epstein Jan 2022

Energy As A Limiting Factor In Neuronal Seizure Control: A Mathematical Model, Sophia E. Epstein

CMC Senior Theses

The majority of seizures are self-limiting. Within a few minutes, the observed neuronal synchrony and deviant dynamics of a tonic-clonic or generalized seizure often terminate. However, a small epilesia partialis continua can occur for years. The mechanisms that regulate subcortical activity of neuronal firing and seizure control are poorly understood. Published studies, however, through PET scans, ketogenic treatments, and in vivo mouse experiments, observe hypermetabolism followed by metabolic suppression. These observations indicate that energy can play a key role in mediating seizure dynamics. In this research, I seek to explore this hypothesis and propose a mathematical framework to model how …


Extending Power Series Methods For The Hodgkin-Huxley Equations, Including Sensitive Dependence, James S. Sochacki Nov 2020

Extending Power Series Methods For The Hodgkin-Huxley Equations, Including Sensitive Dependence, James S. Sochacki

CODEE Journal

A neural cell or neuron is the basic building block of the brain and transmits information to other neurons. This paper demonstrates the complicated dynamics of the neuron through a numerical study of the Hodgkin-Huxley differential equations that model the ionic mechanisms of the neuron: slight changes in parameter values and inputted electrical impulses can lead to very different (unexpected) results. The methods and ideas developed for the ordinary differential equations are extended to partial differential equations for Hodgkin-Huxley networks of neurons in one, two and three dimensions.


Toric Ideals, Polytopes, And Convex Neural Codes, Caitlin Lienkaemper Jan 2017

Toric Ideals, Polytopes, And Convex Neural Codes, Caitlin Lienkaemper

HMC Senior Theses

How does the brain encode the spatial structure of the external world?

A partial answer comes through place cells, hippocampal neurons which

become associated to approximately convex regions of the world known

as their place fields. When an organism is in the place field of some place

cell, that cell will fire at an increased rate. A neural code describes the set

of firing patterns observed in a set of neurons in terms of which subsets

fire together and which do not. If the neurons the code describes are place

cells, then the neural code gives some information about the …