Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Neuroscience and Neurobiology

Targeting Pro-Inflammatory Function Of Microglia Using Small Molecules To Combat Neurodegeneration, Gabrielle C. Williams, Priya Prakash, Gaurav Chopra Aug 2018

Targeting Pro-Inflammatory Function Of Microglia Using Small Molecules To Combat Neurodegeneration, Gabrielle C. Williams, Priya Prakash, Gaurav Chopra

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microglia are the brain’s resident immune cells that are responsible for maintaining homeostasis in healthy conditions. During injury or infection, resting microglia get activated and produce pro-inflammatory cytokines such as IL-1b, IL-1a, IL-6, etc. along with reactive oxygen species like nitric oxide (NO) to combat neuroinflammatory diseases such as Alzheimer’s disease (AD). Inflammation is characterized by the activation of resident-immune cells in the brain called microglia that respond to the eat-me signals released by the toxic amyloid beta peptides as well as the dying neurons in the microenvironment. Recent studies have shown that activated microglia induce neuronal death by secreting …


Neural Coding Of An Auditory Pitch Illusion, Maria Alejandra Barrera, Mark Sayles, Ravinderjit Singh Aug 2018

Neural Coding Of An Auditory Pitch Illusion, Maria Alejandra Barrera, Mark Sayles, Ravinderjit Singh

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pitch is an important perceptual dimension in audition, supporting auditory object segregation, melody recognition and lexical distinction. Huggins’ pitch, for example, is a phenomenon evoked by two sources of broadband noise presented binaurally with an inter-aural phase shift over a narrow frequency band. Huggins’ pitch and other dichotic pitches have been studied extensively using perceptual experiments. Several models have been proposed to explain and predict the perception of pitch; however, no studies have tried to record in vivo neuron responses to Huggins’ pitch (HP) nor have tried to explain how the HP is coded by neurons. The existence of pitches …


The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li Aug 2017

The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Schwann cells are glial cells that serve the vital role of supporting neurons in the peripheral nervous system. While their primary function is to provide insulation (myelin) for axons, they also help regenerate injured axons by digesting severed axons and providing scaffolding to guide the regeneration process. This specific role of Schwann cells makes them highly important cellular targets following nerve injury. Although some efforts have been made to encourage Schwann cell migration after nerve damage, the use of electric fields to control cell responses remain unexplored; therefore, this experiment serves to characterize the behavior of Schwann cells to weak …


Co-Modulation Masking Release Begins In The Auditory Periphery, Kareem R. Hussein, Agudemu Borjigan, Mark Sayles Aug 2017

Co-Modulation Masking Release Begins In The Auditory Periphery, Kareem R. Hussein, Agudemu Borjigan, Mark Sayles

The Summer Undergraduate Research Fellowship (SURF) Symposium

Understanding speech in noisy environments can be difficult, especially for people with hearing loss. The background noise can cover up the sounds of interest. Normally, the auditory system works to alleviate this problem by tagging and then cancelling the noise. Our experiments are aimed at understanding the mechanism of this noise cancellation process. We hypothesize that non-linear signal processing in the mammalian cochlea (the most peripheral part of the auditory system) is the basis of noise cancellation. To test this hypothesis, we measured the responses of auditory-nerve fibers (ANFs) to sounds embedded in background noise with different statistical properties. ANFs …


A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem Aug 2017

A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

In excitatory neurons, the ability of a synaptic connection to strengthen or weaken is known as synaptic plasticity and is thought to be the cellular basis for learning and memory. Understanding the mechanism of synaptic plasticity is an important step towards understanding and developing treatment methods for learning and memory disorders. A key molecular process in synaptic plasticity for mammalian glutamatergic neurons is the exocytosis (delivery to the synapse) of AMPA-type glutamate receptors (AMPARs). While the protein signaling pathways responsible for exocytosis have long been investigated with experimental methods, it remains unreasonable to study the system in its full complexity …


A Touchscreen Assay To Probe The Role Of The Serotonergic System In Learning And Visual Information Processing, Jeffrey M. Dorsch, Alexandr Pak, Alexander A. Chubykin Aug 2017

A Touchscreen Assay To Probe The Role Of The Serotonergic System In Learning And Visual Information Processing, Jeffrey M. Dorsch, Alexandr Pak, Alexander A. Chubykin

The Summer Undergraduate Research Fellowship (SURF) Symposium

The neurotransmitter serotonin is involved in numerous processes in the brain such as behavior, learning, memory, mood, and neurodevelopment. Serotonin signaling is regulated by the serotonin transporter protein (SERT), which maintains normal serotonin levels. Mutations in the SERT gene are known to correlate with cognitive and behavioral deficits seen in psychiatric disorders, such as anxiety disorders, depression, and autism spectrum disorder. Researchers study these deficits using SERT knockout (KO) mice, a model that lacks functional SERT and displays changes in anxiety, learning, and motivation. We are interested in how the absence of SERT affects visual processing and learning. A popular …


Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …


Developing Strategies For Anatomical Characterization Of Locus Coeruleus - Cortical Projections, Kendra Wang, Qiuyu Wu, Alexander A. Chubykin Aug 2016

Developing Strategies For Anatomical Characterization Of Locus Coeruleus - Cortical Projections, Kendra Wang, Qiuyu Wu, Alexander A. Chubykin

The Summer Undergraduate Research Fellowship (SURF) Symposium

The locus coeruleus (LC) is a small noradrenergic nucleus located in the midbrain that releases the neurotransmitter norepinephrine to diverse brain regions. Through release of norepinephrine, the LC plays a central role in modulating numerous physiological functions including attention, arousal, and mood and behavior. Although the LC projects to many brain region, there is limited information about the organization and the afferent projections to the LC that modulates its activity. The goal of this study was to characterize the anatomical projections between LC and cortical areas using a variety of different experimental techniques, including survival brain surgery, stereotaxic injections of …


Using Pupillometry To Characterize Visual Perception In Autistic Mouse Models, Chirag B. Patel, Samuel T. Kissinger, Alexandr Pak, Nicholas Dicola, Alexander A. Chubkyin Aug 2016

Using Pupillometry To Characterize Visual Perception In Autistic Mouse Models, Chirag B. Patel, Samuel T. Kissinger, Alexandr Pak, Nicholas Dicola, Alexander A. Chubkyin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fragile X syndrome (FXS) is the leading genetic cause of autism. Individuals with Fragile X Syndrome (FXS) commonly display social, behavioral, and intellectual disabilities. Perceptual deficits and their underlying neural activity remain poorly characterized in FXS and other autism spectrum disorders (ASD’s). To explore visual perception in autism, we developed camera based pupil tracking software using OpenCV (an open-source computer vision library) capable of measuring visually evoked changes in pupil area and position in the FXS mouse model (Fmr1 KO). Changes in pupil area and position are believed to correlate with changes in arousal or visual processing and may …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


Characterizing The Rogfp2-Orp1 Fluorescent Biosensor For Detecting Oxidative Stress In Mammalian Cells, Sara A. Doan, Stevie Norcross, Mathew Tantama Sep 2015

Characterizing The Rogfp2-Orp1 Fluorescent Biosensor For Detecting Oxidative Stress In Mammalian Cells, Sara A. Doan, Stevie Norcross, Mathew Tantama

The Summer Undergraduate Research Fellowship (SURF) Symposium

Parkinson’s disease is a neurodegenerative disease involving the death of neurons in the substantia nigra and loss of the neurotransmitter, dopamine. The disease leads to progressive loss of motor control. Exact causes and mechanisms by which Parkinson’s disease proceeds are unknown, however, previous experiments determine oxidative stress in mitochondria as a factor that results in cell death. Strategies have been implemented to generate fluorescent biosensors to monitor reactive oxygen species (ROS) concentrations while simultaneously measuring the spatiotemporal distribution and correlation between the ROS, cellular function and organelle. Orp1, an enzyme found in yeast, is a sensitive oxidizing species and when …


Analysis Of Mitochondrial Turnover In Neuromuscular Junctions Of Parkin Mutants, Kenny Nguyen, Hyun Sung, Peter J. Hollenbeck Aug 2015

Analysis Of Mitochondrial Turnover In Neuromuscular Junctions Of Parkin Mutants, Kenny Nguyen, Hyun Sung, Peter J. Hollenbeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

The accumulation of dysfunctional or damaged mitochondria in neurons has been linked to the pathogenesis of many neurodegenerative diseases, such as Parkinson’s disease. It has been proposed that proteins PINK1 and Parkin regulate mitochondrial quality control by selectively targeting depolarized mitochondria for autophagic degradation, a process known as mitophagy. Though previously analyzed in the cell bodies and axons of neurons, the role of the PINK1/Parkin pathway in the synapse is unclear, and it is not known whether mitochondrial turnover occurs in the neuromuscular junctions (NMJs). To study this, intact Drosophila nervous systems were analyzed in vivo by performing gentle dissections …


Competitive Tuning Of Calmodulin Target Protein Activation Drives E-Ltp Induction In Ca1 Hippocampal Neurons, Daniel R. Romano, Tamara L. Kinzer-Ursem Aug 2015

Competitive Tuning Of Calmodulin Target Protein Activation Drives E-Ltp Induction In Ca1 Hippocampal Neurons, Daniel R. Romano, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

A number of neurological disorders are caused by disruptions in dynamic neuronal connections called synapses. Normally, electrical activity between neurons activates protein cascades that cause long-lasting, localized changes in the structure and molecular composition of synapses. These changes either increase or decrease the strength of synaptic connections, leading to long-term-potentiation (LTP) or long-term-depression (LTD), respectively. The protein cascades responsible for this synaptic plasticity are initiated in a stimulus-dependent manner by the Ca2+ sensor calmodulin (CaM). Ultimately, it is disruptions within these signaling pathways that cause disease. Traditionally, these protein networks are studied in the laboratory, but limitations in existing …


Behavioral Outputs Of Fragile-X Autistic Mice Exposed To Open-Field, Randomized, Short-Term Visual Stimuli, Nicholas M. Dicola, Alexander A. Chubykin Aug 2015

Behavioral Outputs Of Fragile-X Autistic Mice Exposed To Open-Field, Randomized, Short-Term Visual Stimuli, Nicholas M. Dicola, Alexander A. Chubykin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Animal models of different neurological disorders are required for studying the pathophysiology of these diseases, and for potential development of pharmacological and behavioral treatments. The scientific community often uses mouse models for behavior studies due to their powerful genetic tools and low cost. However, subjective measurement techniques are often used when analyzing mice for behavioral traits which often results in discrepancies in results. An automated tracking software would aim to eliminate these discrepancies and subjective analysis. This lab has developed a software program which offered an ability to automatically collect open-field behavioral data with simultaneous on-line analysis. Python, an open …


A Screen To Identify Saga-Activated Genes That Are Required For Proper Photoreceptor Axon Targeting In Drosophila Melanogaster, Kaelan J. Brennan, Vikki M. Weake, Jingqun Q. Ma Aug 2015

A Screen To Identify Saga-Activated Genes That Are Required For Proper Photoreceptor Axon Targeting In Drosophila Melanogaster, Kaelan J. Brennan, Vikki M. Weake, Jingqun Q. Ma

The Summer Undergraduate Research Fellowship (SURF) Symposium

The inherited human genetic disease spinocerebellar ataxia type 7 (SCA7) is characterized by progressive neurodegeneration and visual impairment that ultimately leads to blindness. SCA7 results from a mutation in the human ATXN7 gene that causes an expansion of polyglutamine tracts in this gene’s corresponding protein. Human ATXN7 protein serves as a component of the deubiquitylase (DUB) module of the large, multi-subunit complex Spt-Ada-Gcn acetyltransferase, or SAGA. SAGA is a transcriptional coactivator and histone modifier that functions to deubiquitylate histone H2B and allow for transcription of SAGA-mediated genes to occur. In Drosophila, mutations in SAGA DUB’s Nonstop and sgf11 components …


Analysis Of Neuronal And Microglial Responses To Implanted Silicon Devices Through Immunohistochemistry And Clarity, Michael A. Leathers, Kevin J. Otto Oct 2013

Analysis Of Neuronal And Microglial Responses To Implanted Silicon Devices Through Immunohistochemistry And Clarity, Michael A. Leathers, Kevin J. Otto

The Summer Undergraduate Research Fellowship (SURF) Symposium

Brain computer interfaces (BCI’s) and implantable cortical devices have recently emerged in research as promising treatment methods for a variety of neurological problems such as motor dysfunction, memory loss, and sudden onset seizures. The number of people currently suffering from a loss of nervous system function as a result of neurodegenerative diseases or injury creates a need for reliable neural prostheses. The autoimmune response of the Central Nervous System (CNS) when introduced with a foreign object such as an electrode shank quickly impedes signal strength and degrades the functional life of the device. Two different experimental methods were used to …