Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience

2016

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 66

Full-Text Articles in Neuroscience and Neurobiology

Protein Kinase M Zeta-Mediated Ltp Maintenance In The Non-Human Primate Hippocampus: A Role For Stress And Serotonergic Signaling In Affective Processing, Sasha L. Fulton Dec 2016

Protein Kinase M Zeta-Mediated Ltp Maintenance In The Non-Human Primate Hippocampus: A Role For Stress And Serotonergic Signaling In Affective Processing, Sasha L. Fulton

Theses and Dissertations

Early-Life Stress (ELS) is associated with vulnerability to mood disorder, but it’s not well understood how ELS contributes to deficits in cognitive function. Atypical PKMzeta is critical for LTP maintenance and memory. The current study aims to characterize the ELS phenotype with respect to this key marker of hippocampal LTP.


Pdz Protein Regulation Of Β-Arrestin Recruitment And Gpcr Trafficking, Sarah Gupta Dec 2016

Pdz Protein Regulation Of Β-Arrestin Recruitment And Gpcr Trafficking, Sarah Gupta

Electronic Thesis and Dissertation Repository

β-arrestins are versatile adaptor proteins that play a vital role in regulation of G protein coupled receptor (GPCR) trafficking and signalling properties. PDZ proteins have previously been shown to modulate β-arrestin2 recruitment and receptor internalization for many GPCRs including Corticotropin-Releasing Factor Receptor 1 (CRFR1), a receptor whose antagonists have been shown to demonstrate both anxiolytic- and antidepressant-like effects. Further characterization of the interplay between β-arrestins and PDZ proteins may aid in determining a potential mechanism for PDZ protein regulation of GPCR trafficking. Our findings suggest that PDZ proteins PSD-95, MAGI1, and PDZK1 complex with β-arrestin2 by interacting via the PDZ …


Mitogen And Morphogen Signaling Dysregulation: Pathophysiological Influence In Pancreatic Cancer And Alzheimer’S Disease, Eric Cruz Dec 2016

Mitogen And Morphogen Signaling Dysregulation: Pathophysiological Influence In Pancreatic Cancer And Alzheimer’S Disease, Eric Cruz

Theses & Dissertations

Although the etiology of a particular disease will vary, there are genetic and epigenetic bottlenecks that frequently converge resulting in dysregulation of mitogenic and morphogenetic signaling. This propensity is acutely experienced in malignancy and neurodegenerative disease.

Here, we have first investigated the role of dysregulated signaling in the context of pancreatic cancer (PC). Morphogenetic signaling has been regarded as a pleiotropic pathway with the potential to promote and inhibit metastatic features. Our investigation of bone morphogenetic protein 2 (BMP-2), an archetypical member of the BMP superfamily, has revealed the presence of extracellular, intracellular, and long non-coding RNA products. Our findings …


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

Dissertations & Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce …


Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner Dec 2016

Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner

Dissertations & Theses (Open Access)

Organisms from flies to mammals utilize thermoreceptors to detect and respond to noxious thermal stimuli. Although much is understood about noxious heat avoidance, our understanding of the basic biology of noxious cold perception is gravely minimal. Numerous clinical conditions disrupt the sensory machinery, such as in patients suffering from tissue damage (from wound or sunburn), or injury to the peripheral nerves, as in patients with diabetes or undergoing chemotherapy. Our goal is to determine the genetic basis for noxious cold perception and injury-induced nociceptive sensitization using the genetically tractable Drosophila model. Using a novel "cold probe" tool and assay we …


Transient Receptor Potential Cation Channel, Subfamilies V, Member 1 (Trpv1) And M, Member 1 (Trpm1) Contribute To Neural Signaling In Mouse Retina., Jennifer Noel Dec 2016

Transient Receptor Potential Cation Channel, Subfamilies V, Member 1 (Trpv1) And M, Member 1 (Trpm1) Contribute To Neural Signaling In Mouse Retina., Jennifer Noel

Electronic Theses and Dissertations

The retina processes light information through parallel pathways in order to extract and encode the visual scene. Light information is transmitted to the brain through approximately 30 ganglion cells (GCs), the retinal output neurons. Trp channels modulate the responses of retinal neurons within specific pathways. The study of the expression and function of the majority of Trp channels in the retina is largely in its infancy. My dissertation first investigated the expression and function of the transient receptor potential vanilloid-1 (TRPV1) receptor/channel in the retina. TRPV1, the first cloned and most highly studied Trp channel in the peripheral nervous system, …


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Graduate Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of …


Maguk Scaffolds Organize A Key Synaptic Complex In Horizontal Cell Processes Contacting Photoreceptors, Alejandro Vila, Ph.D. Dec 2016

Maguk Scaffolds Organize A Key Synaptic Complex In Horizontal Cell Processes Contacting Photoreceptors, Alejandro Vila, Ph.D.

Dissertations & Theses (Open Access)

Synaptic processes and plasticity of synapses are mediated by large suites of proteins. In most cases, many of these proteins are tethered together by synaptic scaffold proteins. Scaffold proteins have a large number and typically a variety of protein interaction domains that allow many different proteins to be assembled into functional complexes. As each scaffold protein has a different set of protein interaction domains and a unique set of interacting partners, the presence of synaptic scaffolds can provide insight into the molecular mechanisms that regulate synaptic processes. In studies of rabbit retina, we found SAP102 and Chapsyn110 selectively localized in …


Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke Nov 2016

Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke

Ray Enke Ph.D.

RNA sequencing transcriptome analysis using massively parallel next generation sequencing technology provides the capability to understand global changes in gene expression throughout a range of tissue samples. Development of the vertebrate retina requires complex temporal orchestration of transcriptional activation and repression. The chicken embryo (Gallus gallus) is a classic model system for studying developmental biology and retinogenesis. Existing retinal transcriptome projects have been critical to the vision research community for studying aspects of murine and human retinogenesis, however, there are currently no publicly available data sets describing the developing chicken retinal transcriptome. Here we used Illumina RNA sequencing …


The Cellular Context Of Estradiol Regulation In The Zebra Finch Auditory Forebrain, Maaya Ikeda Nov 2016

The Cellular Context Of Estradiol Regulation In The Zebra Finch Auditory Forebrain, Maaya Ikeda

Doctoral Dissertations

Estradiol, traditionally known as a hormone that communicates with distant cells in the body, is also synthesized locally in the brain to act as a neuromodulator. Neuromodulators differ from neurotransmitters in that they simultaneously affect a population of neurons and their actions are not limited to the synapse. One of the many effects of estradiol signaling is rapid modulation of auditory processing in response to external stimuli. The enzyme required for estradiol synthesis, aromatase, is highly expressed in the regions that are involved in higher-order processing of sounds in humans and songbirds. Since zebra finches, a type of songbird, are …


Understanding The Differences Between Neuronal Calcium Sensor Proteins: A Comparison Of Neurocalcin Delta And Hippocalcin, Jeffrey M. Viviano Nov 2016

Understanding The Differences Between Neuronal Calcium Sensor Proteins: A Comparison Of Neurocalcin Delta And Hippocalcin, Jeffrey M. Viviano

Graduate School of Biomedical Sciences Theses and Dissertations

Many neuronal functions, including learning and memory are driven by changes in intracellular Ca2+concentrations. The Neuronal Calcium Sensor (NCS) family of proteins is responsible for mediating the response to calcium. They are typically comprised of 4 EF hands; of which EF 2, 3, and 4 bind calcium.

Hypothesis: NCS proteins carry out unique, non-overlapping functions, and that specific characteristics of the family can be mapped to precise regions of the proteins.

Results: The effect on the following properties were investigated primarily on two highly similar NCS proteins, Neurocalcin Delta (NCALD) and Hippocalcin (HPCA): (1) Response to calcium was determined through …


Corticotropin Releasing Factor Receptor Type 1 Signaling In Epilepsy And Traumatic Brain Injury, V V Chakravarthi Narla Oct 2016

Corticotropin Releasing Factor Receptor Type 1 Signaling In Epilepsy And Traumatic Brain Injury, V V Chakravarthi Narla

Electronic Thesis and Dissertation Repository

Stress increases the frequency by which epileptic seizures occur. Corticotropin-releasing factor (CRF) coordinates neuroendocrine, autonomic and behavioral response to stress. This thesis sought to study the cellular and molecular mechanisms by which CRF regulates the activity of neural circuits in the piriform cortex (PC) in normal and epileptic states. The PC is richly innervated by CRF and 5-HT containing axons arising from the central amygdala and raphe nucleus. CRFR1 and 5-HT2A/CRs have been shown to interact in a manner where CRFR activation subsequently potentiates the activity of 5-HT2A/CRs. The first purpose of this thesis was …


Voltage-Gated K+ Channels And Hiv-1-Induced Neural Injury: Implications For Pathogenesis Of Hiv-1-Associated Neurocognitive Disorders, Han Liu Aug 2016

Voltage-Gated K+ Channels And Hiv-1-Induced Neural Injury: Implications For Pathogenesis Of Hiv-1-Associated Neurocognitive Disorders, Han Liu

Theses & Dissertations

Human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorder (HAND) is a subcortical disease involving neuronal loss and myelin damage. Myelin is deposited by oligodendrocytes through a complex process including oligodendrocyte progenitor cell (OPC) proliferation and maturation. Oligodendrocytes/OPCs are susceptible to viral proteins such as Tat and that myelin damage is associated with oligodendrocyte number decrease. It has been shown that activation of voltage-gated K+ (KV) channels mediates apoptosis in various cell types. KV1.3 is the most predominant KV channel expressed in OPCs/oligodendrocytes and potentially involved in OPC developmental regulation. We studied the involvement of KV …


Cal And Magi Pdz Protein Regulation Of Crfr1 And 5-Ht2ar Trafficking And Signaling, Maha Mahmoud Hammad Aug 2016

Cal And Magi Pdz Protein Regulation Of Crfr1 And 5-Ht2ar Trafficking And Signaling, Maha Mahmoud Hammad

Electronic Thesis and Dissertation Repository

PDZ (PSD95/Disc Large/Zona Occludens) domain-containing proteins are scaffolding proteins that play important roles in regulating the activity of G protein-coupled receptors. Corticotropin Releasing Factor Receptor 1 (CRFR1) and Serotonin 2A Receptor (5-HT2AR) are two GPCRs that are commonly associated with mental disorders. Both receptors also contain a class I PDZ-binding motif at the carboxyl terminal tail. In the first chapter, we investigate the effects of CAL (CFTR-associated ligand) on regulating the trafficking and signaling of CRFR1. We demonstrate a role for CAL in inhibiting CRFR1 endocytosis, cell surface expression, and CRF-mediated ERK1/2 signaling via the CRFR1 PDZ-binding motif. …


Therapeutic Raavrh10 Mediated Sod1 Silencing In Adult Sod1(G93a) Mice And Nonhuman Primates, Florie Borel, Gwladys Gernoux, Brynn Cardozo, Jake P. Metterville, Gabriela Toro Cabrera, Lina Song, Qin Su, Guang Ping Gao, Mai K. Elmallah, Robert H. Brown Jr., Christian Mueller Aug 2016

Therapeutic Raavrh10 Mediated Sod1 Silencing In Adult Sod1(G93a) Mice And Nonhuman Primates, Florie Borel, Gwladys Gernoux, Brynn Cardozo, Jake P. Metterville, Gabriela Toro Cabrera, Lina Song, Qin Su, Guang Ping Gao, Mai K. Elmallah, Robert H. Brown Jr., Christian Mueller

Christian Mueller

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and …


Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser Aug 2016

Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser

Graduate School of Biomedical Sciences Theses and Dissertations

Brain homeostasis can be affected in a number of ways that lead to gross anatomical, cellular, and molecular disturbances giving rise to diseases like Alzheimer’s disease (AD) and related dementias. Unfortunately, the mechanistic pathoetiology of AD’s hallmark features of cerebral amyloid plaque buildup and neuronal death are still disputed. Using human brain AD sections, immunohistochemistry experiments revealed internalized surface proteins, co-localized to an expanded lysosomal compartment. Other stains for amyloid-β1-42 (Aβ42) and various immunoglobulin (Ig) species displayed them leaking out of the cerebrovasculature through a dysfunctional blood-brain barrier (BBB), binding to neurons in the vicinity, and localizing to intracellular vesicles …


Tnf Signaling During Tissue Damage-Induced Nociceptive Sensitization In Drosophila, Juyeon Jo Aug 2016

Tnf Signaling During Tissue Damage-Induced Nociceptive Sensitization In Drosophila, Juyeon Jo

Dissertations & Theses (Open Access)

Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive sensitization in both Drosophila and vertebrates. In Drosophila larval model of nociceptive sensitization, UV irradiation in results in epidermal apoptosis and thermal allodynia. TNF/Eiger is produced from dying epidermal cells and acts its receptor in nociceptive sensory neurons to induce thermal allodynia. Inhibition of TNF signaling results in attenuation of nociceptive sensitization whereas epidermal apoptosis still occurs in the absence of TNF. Major gaps in this model are the precise relationship between apoptotic cell death and production of TNF/Eiger, downstream signaling mediators for TNFR/Wengen, and target genes that alter nociceptive …


Characterization Of Pro-Inflammatory And Anti-Inflammatory Microglia In The Anterior Cingulate Cortex In Autism Spectrum Disorder, Aubrey N. Sciara Aug 2016

Characterization Of Pro-Inflammatory And Anti-Inflammatory Microglia In The Anterior Cingulate Cortex In Autism Spectrum Disorder, Aubrey N. Sciara

Electronic Theses and Dissertations

Autism spectrum disorder (ASD) is associated with functional abnormalities of the anterior cingulate cortex (ACC), a brain area that mediates social behavior. Given evidence of a role of inflammation in ASD, markers of pro-inflammatory and anti-inflammatory microglia were studied using postmortem ACC tissues from ASD and age-matched typically developed control donors. Gene expression levels of pro-inflammatory (CD68, HLA-DRA, IL1B, NOS2, PTGS2) and anti-inflammatory (ARG1, IGF1, MRC1, PPARG) microglial genes were measured using quantitative real-time PCR. Additionally, brain sections were immunohistochemically stained for a microglial marker. Expression levels of IGF1 were modestly higher, while the expression of …


Effects Of Glyceollin On Mrna Expression In The Female Mouse Brain., Sanaya Firdaus Bamji Aug 2016

Effects Of Glyceollin On Mrna Expression In The Female Mouse Brain., Sanaya Firdaus Bamji

Electronic Theses and Dissertations

Glyceollins (Glys), produced by soy plants in response to stress, have anti-estrogenic activity in breast and ovarian cancer cell lines in vitro and in vivo. In addition to known anti-estrogenic effects, Glys exhibit mechanisms of action not involving estrogen receptor (ER) signaling. To date, effects of Glys on brain physiology and function are unknown. The purpose of the experiments summarized in this dissertation was to gain an understanding of the effects of Gly on brain-related functions in the female mouse brain through the observation of changes in gene expression. For our initial studies, we treated ovariectomized Swiss Webster (CFW) …


The Combined Effects Of Leptin And Coenzyme Q10 In Ameliorating Obesity- Induced Infertility In Female Rats, Adekunle Adedeji Aug 2016

The Combined Effects Of Leptin And Coenzyme Q10 In Ameliorating Obesity- Induced Infertility In Female Rats, Adekunle Adedeji

Electronic Theses and Dissertations

Infertility is one of the major problems of obesity. Studies have shown that administration of leptin reversed obesity-induced infertility in rats and mice. Coenzyme Q10 (CoQ10) is an antioxidant and also supplies the energy needed for ovulation and embryo development. We hypothesized that leptin when combined with CoQ10 could greatly improve obesity-induced infertility. The results showed a significant decrease in food intake, body weight, and the regular estrous cycle was restored after treatment with leptin+CoQ10. There was a significant increase (p10 significantly (p10 can improve fertility in obese infertile female rats. This study could …


Evaluating A Novel Photochemical Tool For Labeling And Tracking Live, Endogenous Calcium-Permeable Ampars, Rosamund Elizabeth Combs-Bachmann Jul 2016

Evaluating A Novel Photochemical Tool For Labeling And Tracking Live, Endogenous Calcium-Permeable Ampars, Rosamund Elizabeth Combs-Bachmann

Masters Theses

The purpose of this research is to advance development of a photochemical tool designed to probe the role of ionotropic glutamate receptor signaling in neurodegenerative processes, and to delve more deeply into the biological processes underlying the role of these receptors in signaling and memory formation. This ligand-targeted nanoprobe was designed and developed in our lab to label endogenous calcium-permeable AMPARs (CP-AMPARs) in live cells with minimal disruption to native receptor activity. Nanoprobe is designed to use naphthyl acetyl spermine (NASPM) as a photocleavable ligand to target and covalently label native CP-AMPARs with a non-perturbing, fluorescent marker that then allows …


Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead Jul 2016

Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead

College of Education and Human Sciences: Dissertations, Theses, and Student Research

Processing dynamic tactile inputs is a key function of somatosensory systems. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of motor function following neurological insult. Little is known about tactile velocity encoding in trigeminal networks associated with mechanosensory inputs to the face, or the consequences of movement.

High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile inputs to perioral hairy skin in 20 healthy adults. A custom multichannel, scalable …


The Role Of Forebrain Cholinergic Signalling In Regulating Hippocampal Function And Neuropathology, Mohammed Al-Onaizi Jun 2016

The Role Of Forebrain Cholinergic Signalling In Regulating Hippocampal Function And Neuropathology, Mohammed Al-Onaizi

Electronic Thesis and Dissertation Repository

Cholinergic dysfunction has been associated with cognitive abnormalities in a variety of neurodegenerative and neuropsychiatric disorders, including Alzheimer’s Disease (AD). Cumulative use of drugs with anticholinergic activity is associated with increased risk for dementia and AD. Also, cholinergic function has been implicated in predicting the development of key neuropathological hallmarks seen in AD. However, the relationship between cholinergic dysfunction and conservation of cognitive ability as well as neuronal cell maintenance is not fully understood. Here, we tested how information processing and distinct molecular mechanisms associated with AD are regulated by cholinergic tone in genetically-modified mice in which cholinergic transmission was …


The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez Jun 2016

The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez

Lawrence University Honors Projects

A degenerative disease-like phenotype, specifically reduction in synaptic protein levels in adult worms, is correlated with loss-of-function of the only RFX transcription factor gene, daf-19, in C. elegans. This gene encodes four known transcription factor isoforms, two of which are correlated with particular functions. The DAF-19C isoform activates genes responsible for cilia development, while DAF-19M is needed for cilia specification in males. A comparison of the transcriptome of daf-19 null and isogenic wild type adult worms suggests both positive and negative regulation of gene expression is correlated with the presence of DAF-19 proteins. We have assessed DAF-19 regulation …


Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller Jun 2016

Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller

Lawrence University Honors Projects

DAF-19, the only RFX transcription factor found in C. elegans, is required for the formation of neuronal sensory cilia. Four isoforms of the DAF-19 protein have been reported, and the m86 nonsense (null) mutation affecting all four isoforms has been shown to prevent cilia formation. Transcriptome analyses employing microarrays of L1 and adult stage worms were completed using RNA from daf-19(m86) worms and an isogenic wild type strain to identify additional putative DAF-19 target genes. Using transcriptional fusions with GFP, we compared the expression patterns of several potential gene targets using fluorescence confocal microscopy. Expression patterns were characterized in …


Changes In Synaptic Protein Content And Signaling In A Mouse Model Of Fragile X Syndrome, Kelly Birch, Peter W. Vanderklish Phd May 2016

Changes In Synaptic Protein Content And Signaling In A Mouse Model Of Fragile X Syndrome, Kelly Birch, Peter W. Vanderklish Phd

Undergraduate Honors Theses

Fragile X Syndrome--the most common inherited form of intellectual disability--is characterized by low IQ, impaired social interaction, hyperactivity and impulsivity, and abnormal physical traits including an elongated face and protruding ears. Nearly half of all children with Fragile X also meet diagnostic criteria for autism spectrum disorder. Fragile X is caused by a trinucleotide repeat expansion on the X chromosome, leading to silencing of the Fragile X mental retardation gene (FMR1) and thus lack of expression of Fragile X mental retardation protein (FMRP). As a key translational suppressor, FMRP is crucial for normal neural development and synaptic function. The current …


Npas1+ Pallidal Neurons Target Striatal Projection Neurons, Savio Chan, Kelly Glajch, Daniel Kelver, Daniel Hegeman, Qiaoling Cui, Harry Xenias, Elizabeth Augustine, Vivian Hernández, Neha Verma '17, Tina Huang, Minmin Luo, Nicholas Justice May 2016

Npas1+ Pallidal Neurons Target Striatal Projection Neurons, Savio Chan, Kelly Glajch, Daniel Kelver, Daniel Hegeman, Qiaoling Cui, Harry Xenias, Elizabeth Augustine, Vivian Hernández, Neha Verma '17, Tina Huang, Minmin Luo, Nicholas Justice

Student Publications & Research

Compelling evidence demonstrates the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum (dStr) has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct- and indirect-pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1- expressing neurons and is strengthened in a chronic Parkinson’s disease (PD) model. Alterations of the GPe-SPN …


Interaction Of Tau With The Rna-Binding Protein Tia1 Regulates Tau Pathophysiology And Toxicity, Tara Vanderweyde, Daniel J. Apicco, Katherine Youmans-Kidder, Peter E. A. Ash, Casey Cook, Edroaldo Lummertz Da Rocha, Karen Jansen-West, Alissa A. Frame, Allison Citro, John D. Leszyk, Pavel Ivanov, Jose F. Abisambra, Martin Steffen, Hu Li, Leonard Petrucelli, Benjamin Wolozin May 2016

Interaction Of Tau With The Rna-Binding Protein Tia1 Regulates Tau Pathophysiology And Toxicity, Tara Vanderweyde, Daniel J. Apicco, Katherine Youmans-Kidder, Peter E. A. Ash, Casey Cook, Edroaldo Lummertz Da Rocha, Karen Jansen-West, Alissa A. Frame, Allison Citro, John D. Leszyk, Pavel Ivanov, Jose F. Abisambra, Martin Steffen, Hu Li, Leonard Petrucelli, Benjamin Wolozin

Sanders-Brown Center on Aging Faculty Publications

Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown …


An Initial Analysis Of A Long-Term Ketogenic Diet’S Impact On Motor Behavior, Brain Purine Systems, And Nigral Dopamine Neurons In A New Genetic Rodent Model Of Parkinson’S Disease, Jacob Rubin, William H. Church May 2016

An Initial Analysis Of A Long-Term Ketogenic Diet’S Impact On Motor Behavior, Brain Purine Systems, And Nigral Dopamine Neurons In A New Genetic Rodent Model Of Parkinson’S Disease, Jacob Rubin, William H. Church

Senior Theses and Projects

A growing body of research suggests that dopaminergic cell death seen in Parkinson’s disease is caused by mitochondrial dysfunction. Oxidative stress, with subsequent generation of reactive oxygen species, is the hallmark biochemical product of mitochondrial dysfunction. The ketogenic diet has been found to enhance mitochondrial energy production, protect against reactive oxygen species-generated cell death, and increase adenosine, a purine that modulates dopamine activity. The current study evaluates the effects of a long-term (5-month) ketogenic diet on behavioral, neurochemical, and neuroanatomical measures in PINK1-KO rats, a new animal model of Parkinson’s disease. Both wild-type and PINK1-KO animals fed a ketogenic diet …


The Effects Of Lipopolysaccharide-Induced Neuroinflammation On Learning And Forgetting In Juvenile Rats, Michele Barry May 2016

The Effects Of Lipopolysaccharide-Induced Neuroinflammation On Learning And Forgetting In Juvenile Rats, Michele Barry

Seton Hall University Dissertations and Theses (ETDs)

The inability to remember events experienced very early in life is referred to as Infantile Amnesia (IA) and has been observed in both humans and animals. Over the years interest in the phenomenon waned, but has recently increased with the discovery of new neurobiological methods to study brain function (e.g., Callaghan, Li & Richardson, 2014). The neurobiological mechanism behind IA has yet to be determined, but several innovative theories have been developed with these new research methods. The neurogenesis hypothesis theorizes that increased neurogenesis during early development disrupts previously established memories. The hippocampus, an area that mediates both the memory …