Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Neuroscience and Neurobiology

Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead Jul 2016

Encoding Of Saltatory Tactile Velocity In The Adult Orofacial Somatosensory System, Rebecca Custead

College of Education and Human Sciences: Dissertations, Theses, and Student Research

Processing dynamic tactile inputs is a key function of somatosensory systems. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of motor function following neurological insult. Little is known about tactile velocity encoding in trigeminal networks associated with mechanosensory inputs to the face, or the consequences of movement.

High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile inputs to perioral hairy skin in 20 healthy adults. A custom multichannel, scalable …


Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller Jun 2016

Activation Of Target Gene Expression In Neurons By The C. Elegans Rfx Transcription Factor, Daf-19, Katherine P. Mueller

Lawrence University Honors Projects

DAF-19, the only RFX transcription factor found in C. elegans, is required for the formation of neuronal sensory cilia. Four isoforms of the DAF-19 protein have been reported, and the m86 nonsense (null) mutation affecting all four isoforms has been shown to prevent cilia formation. Transcriptome analyses employing microarrays of L1 and adult stage worms were completed using RNA from daf-19(m86) worms and an isogenic wild type strain to identify additional putative DAF-19 target genes. Using transcriptional fusions with GFP, we compared the expression patterns of several potential gene targets using fluorescence confocal microscopy. Expression patterns were characterized in …


The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez Jun 2016

The Role Of Daf-19 In Non-Ciliated Neurons: How Is Neural Development Regulated By Different Daf-19 Isoforms?, Zabdiel Ek Vazquez

Lawrence University Honors Projects

A degenerative disease-like phenotype, specifically reduction in synaptic protein levels in adult worms, is correlated with loss-of-function of the only RFX transcription factor gene, daf-19, in C. elegans. This gene encodes four known transcription factor isoforms, two of which are correlated with particular functions. The DAF-19C isoform activates genes responsible for cilia development, while DAF-19M is needed for cilia specification in males. A comparison of the transcriptome of daf-19 null and isogenic wild type adult worms suggests both positive and negative regulation of gene expression is correlated with the presence of DAF-19 proteins. We have assessed DAF-19 regulation …


Npas1+ Pallidal Neurons Target Striatal Projection Neurons, Savio Chan, Kelly Glajch, Daniel Kelver, Daniel Hegeman, Qiaoling Cui, Harry Xenias, Elizabeth Augustine, Vivian Hernández, Neha Verma '17, Tina Huang, Minmin Luo, Nicholas Justice May 2016

Npas1+ Pallidal Neurons Target Striatal Projection Neurons, Savio Chan, Kelly Glajch, Daniel Kelver, Daniel Hegeman, Qiaoling Cui, Harry Xenias, Elizabeth Augustine, Vivian Hernández, Neha Verma '17, Tina Huang, Minmin Luo, Nicholas Justice

Student Publications & Research

Compelling evidence demonstrates the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum (dStr) has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct- and indirect-pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1- expressing neurons and is strengthened in a chronic Parkinson’s disease (PD) model. Alterations of the GPe-SPN …


Interaction Of Tau With The Rna-Binding Protein Tia1 Regulates Tau Pathophysiology And Toxicity, Tara Vanderweyde, Daniel J. Apicco, Katherine Youmans-Kidder, Peter E. A. Ash, Casey Cook, Edroaldo Lummertz Da Rocha, Karen Jansen-West, Alissa A. Frame, Allison Citro, John D. Leszyk, Pavel Ivanov, Jose F. Abisambra, Martin Steffen, Hu Li, Leonard Petrucelli, Benjamin Wolozin May 2016

Interaction Of Tau With The Rna-Binding Protein Tia1 Regulates Tau Pathophysiology And Toxicity, Tara Vanderweyde, Daniel J. Apicco, Katherine Youmans-Kidder, Peter E. A. Ash, Casey Cook, Edroaldo Lummertz Da Rocha, Karen Jansen-West, Alissa A. Frame, Allison Citro, John D. Leszyk, Pavel Ivanov, Jose F. Abisambra, Martin Steffen, Hu Li, Leonard Petrucelli, Benjamin Wolozin

Sanders-Brown Center on Aging Faculty Publications

Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown …


Exploring The Effect Of Novel Small Molecules On Oligodendrocyte Precursor Proliferation, Sagune Sakya May 2016

Exploring The Effect Of Novel Small Molecules On Oligodendrocyte Precursor Proliferation, Sagune Sakya

University Scholar Projects

Gliomas, a type of brain tumor, can be difficult to treat and have a poor survival rate. One pathway that leads to glioma formation is excessive signaling by platelet derived growth factors (PDGF) through PDGF receptor α (PDGFRα). Through this research, I found that novel compounds that downregulate PDGFRα decrease proliferation of Oli-neu cells, an oligodendrocyte precursor cell model, and identified signaling pathways through which these compounds may exert their effect. Further investigation may identify targets for development of glioma treatments.


“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams Apr 2016

“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams

Senior Honors Theses

Alan Turing asked if machines can think, but intelligence is more than logic and reason. I ask if a machine can feel pain or joy, have visions and dreams, or paint a masterpiece. The human brain sets the bar high, and despite our progress, artificial intelligence has a long way to go. Studying neurology from a software engineer’s perspective reveals numerous uncanny similarities between the functionality of the brain and that of a computer. If the brain is a biological computer, then it is the embodiment of artificial intelligence beyond anything we have yet achieved, and its architecture is advanced …


Utilization Of The Clinical Laboratory For The Implementation Of Concussion Biomarkers In Collegiate Football And The Necessity Of Personalized And Predictive Athlete Specific Reference Intervals, Stefanie Podlog (Nee Schulte), Natalie N. Rasmussen, Joseph W. Mcbeth, Patrick Q. Richards, Eric Yochem, David J. Petron, Frederick G. Strathmann Jan 2016

Utilization Of The Clinical Laboratory For The Implementation Of Concussion Biomarkers In Collegiate Football And The Necessity Of Personalized And Predictive Athlete Specific Reference Intervals, Stefanie Podlog (Nee Schulte), Natalie N. Rasmussen, Joseph W. Mcbeth, Patrick Q. Richards, Eric Yochem, David J. Petron, Frederick G. Strathmann

Athletic Training Collection

Background: A continued interest in concussion biomarkers makes the eventual implementation of identified biomarkers into routine concussion assessment an eventual reality. We sought to develop and test an interdisciplinary approach that could be used to integrate blood-based biomarkers into the established concussion management program for a collegiate football team.

Methods: We used a CLIA-certified laboratory for all testing and chose biomarkers where clinically validated testing was available as would be required for results used in clinical decision making. We summarized the existing methods and results for concussion assessment across an entire season to identify and demonstrate the challenges with the …


The Ubiquitin-Proteasome System: Potential Therapeutic Targets For Alzheimer’S Disease And Spinal Cord Injury, Bing Gong, Miroslav Radulovic, Maria E. Figueiredo-Pereira, Christopher Cardozo Jan 2016

The Ubiquitin-Proteasome System: Potential Therapeutic Targets For Alzheimer’S Disease And Spinal Cord Injury, Bing Gong, Miroslav Radulovic, Maria E. Figueiredo-Pereira, Christopher Cardozo

Publications and Research

The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to …


Early Neurodevelopment: Notch Signaling, Axial Differentiation, Brain Patterning, And Neurogenesis, Adrian M. Bebenek '17 Jan 2016

Early Neurodevelopment: Notch Signaling, Axial Differentiation, Brain Patterning, And Neurogenesis, Adrian M. Bebenek '17

Independent Study

The vastly complex, delicate nature of the nervous system calls for a highly effective development system. The development of the nervous system begins early in embryogenesis and is one of the last systems to be completed after birth. Deemed to be one of the most important steps in the evolutionary progression towards sophisticated life, the pathways regulating neurodevelopment are highly specialized and conserved. Embryonic neurodevelopment is an important starting point for the understanding of brain anatomy, function, and its neurobiology. The past few decades have brought about numerous technological advancements allowing for the study of the earliest stages of embryonic …


Role Of The Calcium Plateau In The Neuronal Injury And Behavioral Morbidities Following Organophosphate Intoxication, Laxmikant S. Deshpande, Robert E. Blair, Kristin F. Phillips, Robert J. Delorenzo Jan 2016

Role Of The Calcium Plateau In The Neuronal Injury And Behavioral Morbidities Following Organophosphate Intoxication, Laxmikant S. Deshpande, Robert E. Blair, Kristin F. Phillips, Robert J. Delorenzo

Neurology Publications

Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular …


Cannabinoid Receptor Interacting Protein Suppresses Agonist-Driven Cb1 Receptor Internalization And Regulates Receptor Replenishment In An Agonist-Biased Manner, Lawrence C. Blumes, Sandra Leone-Kabler, Deborah J. Luessen, Glenn S. Marrs, Erica Lyons, Caroline E. Bass, Rong Chen, Dana E. Selley, Allyn C. Howlett Jan 2016

Cannabinoid Receptor Interacting Protein Suppresses Agonist-Driven Cb1 Receptor Internalization And Regulates Receptor Replenishment In An Agonist-Biased Manner, Lawrence C. Blumes, Sandra Leone-Kabler, Deborah J. Luessen, Glenn S. Marrs, Erica Lyons, Caroline E. Bass, Rong Chen, Dana E. Selley, Allyn C. Howlett

Neurology Publications

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminus-associated protein that modulates CB1R signaling via G proteins, and CB1R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB(1)Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown …


Neuron Morphology Influences Axon Initial Segment Plasticity, Allan T. Gulledge, Jaime J. Bravo Jan 2016

Neuron Morphology Influences Axon Initial Segment Plasticity, Allan T. Gulledge, Jaime J. Bravo

Dartmouth Scholarship

In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal …


Overlapping Signatures Of Chronic Pain In The Dna Methylation Landscape Of Prefrontal Cortex And Peripheral T Cells, Renaud Massart, Sergiy Dymov, Magali Millecamps, Matthew Suderman, Stephanie Gregoire, Kevin Koenigs, Sebastian Alvarado, Maral Tajerian, Laura S. Stone, Moshe Szyf Jan 2016

Overlapping Signatures Of Chronic Pain In The Dna Methylation Landscape Of Prefrontal Cortex And Peripheral T Cells, Renaud Massart, Sergiy Dymov, Magali Millecamps, Matthew Suderman, Stephanie Gregoire, Kevin Koenigs, Sebastian Alvarado, Maral Tajerian, Laura S. Stone, Moshe Szyf

Publications and Research

We tested the hypothesis that epigenetic mechanisms in the brain and the immune system are associated with chronic pain. Genome-wide DNA methylation assessed in 9 months post nerve-injury (SNI) and Sham rats, in the prefrontal cortex (PFC) as well as in T cells revealed a vast difference in the DNA methylation landscape in the brain between the groups and a remarkable overlap (72%) between differentially methylated probes in T cells and prefrontal cortex. DNA methylation states in the PFC showed robust correlation with pain score of animals in several genes involved in pain. Finally, only 11 differentially methylated probes in …


Role Of The Chondroitin Sulfate Proteoglycan, Neurocan, In Inhibition Of Sensory Neurite Regeneration, Madison Klump, Umang Khandpur, Chris Calulot, Adrian Centers, Diane M. Snow Jan 2016

Role Of The Chondroitin Sulfate Proteoglycan, Neurocan, In Inhibition Of Sensory Neurite Regeneration, Madison Klump, Umang Khandpur, Chris Calulot, Adrian Centers, Diane M. Snow

Lewis Honors College Capstone Collection

In the adult mammalian brain and spinal cord, neuronal injury results in failed neurite regeneration, in part due to the up-regulation of chondroitin sulfate proteoglycans (CSPGs). CSPGs are molecules consisting of a protein core with covalently bound glycosaminoglycans (GAGS), specifically, chondroitin sulfate side-chains. The majority of CSPGs produced after injury originate from reactive astrocytes found in the glial scar surrounding the injury site. Although this milieu is very complex and involves more than just CSPGs, axonal regrowth may be improved if the expression of specific, highly inhibitory CSPGs produced after injury were attenuated selectively. Neurocan is one type of CSPG …