Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 16 of 16

Full-Text Articles in Neuroscience and Neurobiology

Timing Is Everything: Temporal Dynamics Of Brain Activity Using The Human Connectome Project, Francesca Lofaro Jan 2019

Timing Is Everything: Temporal Dynamics Of Brain Activity Using The Human Connectome Project, Francesca Lofaro

Summer Research

Most neuroimaging studies produce snapshots of brain activity. The goal of this project is to examine the temporal dynamics of how these areas interact through time, using fear as a case study to assess how regions involved in fear interact. Working with Matlab computer code, I sort through the large fMRI dataset known as the Human Connectome Project to extract neuroimaging data from patients with different NIH Toolbox Fear-Somatic survey scores to assess the temporal dynamics between brain regions. The results will allow an understanding beyond which areas are involved, and instead will provide a picture of how these areas …


Code For "Noise-Enhanced Coding In Phasic Neuron Spike Trains", Cheng Ly, Brent D. Doiron Jan 2017

Code For "Noise-Enhanced Coding In Phasic Neuron Spike Trains", Cheng Ly, Brent D. Doiron

Statistical Sciences and Operations Research Data

This zip file contains Matlab scripts and ode (XPP) files to calculate the statistics of the models in "Noise-Enhanced Coding in Phasic Neuron Spike Trains". This article is published in PLoS ONE.


Tau And Aβ Imaging, Csf Measures, And Cognition In Alzheimer's Disease, Matthew R. Brier, Brian Gordon, Karl Friedrichsen, John E. Mccarthy, Ari Stern, Jon Christensen, Christopher Owen, Patricia Aldea, Yi Su, Jason Hassenstab, Nigel J. Cairns, David M. Holtzman, Anne M. Fagan, John C. Morris, Tammie L.S. Benzinger, Beau M. Ances May 2016

Tau And Aβ Imaging, Csf Measures, And Cognition In Alzheimer's Disease, Matthew R. Brier, Brian Gordon, Karl Friedrichsen, John E. Mccarthy, Ari Stern, Jon Christensen, Christopher Owen, Patricia Aldea, Yi Su, Jason Hassenstab, Nigel J. Cairns, David M. Holtzman, Anne M. Fagan, John C. Morris, Tammie L.S. Benzinger, Beau M. Ances

Mathematics Faculty Publications

Alzheimer’s disease (AD) is characterized by two molecular pathologies: cerebral β-amyloidosis in the form of β-amyloid (Aβ) plaques and tauopathy in the form of neurofibrillary tangles, neuritic plaques, and neuropil threads. Until recently, only Aβ could be studied in humans using positron emission tomography (PET) imaging owing to a lack of tau PET imaging agents. Clinical pathological studies have linked tau pathology closely to the onset and progression of cognitive symptoms in patients with AD. We report PET imaging of tau and Aβ in a cohort of cognitively normal older adults and those with mild AD. Multivariate analyses identified unique …


Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang Feb 2016

Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang

COBRA Preprint Series

Non-negative matrix factorization (NMF) is a widely used machine learning algorithm for dimension reduction of large-scale data. It has found successful applications in a variety of fields such as computational biology, neuroscience, natural language processing, information retrieval, image processing and speech recognition. In bioinformatics, for example, it has been used to extract patterns and profiles from genomic and text-mining data as well as in protein sequence and structure analysis. While the scientific performance of NMF is very promising in dealing with high dimensional data sets and complex data structures, its computational cost is high and sometimes could be critical for …


The Neural Dynamics Of Somatosensory Processing And Adaptation Across Childhood: A High-Density Electrical Mapping Study, Neha Uppal, John J. Foxe, John Butler, Frantzy Acluche, Sophie Molholm Jan 2016

The Neural Dynamics Of Somatosensory Processing And Adaptation Across Childhood: A High-Density Electrical Mapping Study, Neha Uppal, John J. Foxe, John Butler, Frantzy Acluche, Sophie Molholm

Articles

Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6–18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging …


Analysis Of Neuronal Sequences Using Pairwise Biases, Zachary Roth Dec 2015

Analysis Of Neuronal Sequences Using Pairwise Biases, Zachary Roth

Department of Mathematics: Dissertations, Theses, and Student Research

Sequences of neuronal activation have long been implicated in a variety of brain functions. In particular, these sequences have been tied to memory formation and spatial navigation in the hippocampus, a region of mammalian brains. Traditionally, neuronal sequences have been interpreted as noisy manifestations of neuronal templates (i.e., orderings), ignoring much richer structure contained in the sequences. This paper introduces a new tool for understanding neuronal sequences: the bias matrix. The bias matrix captures the probabilistic tendency of each neuron to fire before or after each other neuron. Despite considering only pairs of neurons, the bias matrix captures the best …


Partial Covariance Based Functional Connectivity Computation Using Ledoit-Wolf Covariance Regularization, Matthew R. Brier, Anish Mitra, John E. Mccarthy, Beau M. Ances, Abraham Z. Snyder Nov 2015

Partial Covariance Based Functional Connectivity Computation Using Ledoit-Wolf Covariance Regularization, Matthew R. Brier, Anish Mitra, John E. Mccarthy, Beau M. Ances, Abraham Z. Snyder

Mathematics Faculty Publications

Highlights •We use the well characterized matrix regularization technique described by Ledoit and Wolf to calculate high dimensional partial correlations in fMRI data. •Using this approach we demonstrate that partial correlations reveal RSN structure suggesting that RSNs are defined by widely and uniquely shared variance. •Partial correlation functional connectivity is sensitive to changes in brain state indicating that they contain functional information. Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a …


Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond Feb 2015

Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond

Dartmouth Scholarship

Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from …


Clique Topology Reveals Intrinsic Geometric Structure In Neural Correlations, Chad Giusti, Eva Pastalkova, Carina Curto, Vladimir Itskov Jan 2015

Clique Topology Reveals Intrinsic Geometric Structure In Neural Correlations, Chad Giusti, Eva Pastalkova, Carina Curto, Vladimir Itskov

Department of Mathematics: Faculty Publications

Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a 2D environment, and confirmed that our method is able to detect geometric organization using …


Firing Rate Dynamics In Recurrent Spiking Neural Networks With Intrinsic And Network Heterogeneity, Cheng Ly Jan 2015

Firing Rate Dynamics In Recurrent Spiking Neural Networks With Intrinsic And Network Heterogeneity, Cheng Ly

Statistical Sciences and Operations Research Publications

Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, …


Neural Spike Renormalization. Part I — Universal Number 1, Bo Deng Jan 2011

Neural Spike Renormalization. Part I — Universal Number 1, Bo Deng

Department of Mathematics: Faculty Publications

For a class of circuit models for neurons, it has been shown that the transmembrane electrical potentials in spike bursts have an inverse correlation with the intra-cellular energy conversion: the fewer spikes per burst the more energetic each spike is. Here we demonstrate that as the per-spike energy goes down to zero, a universal constant to the bifurcation of spike-bursts emerges in a similar way as Feigenbaum’s constant does to the period-doubling bifurcation to chaos generation, and the new universal constant is the first natural number 1.


Neural Spike Renormalization. Part Ii — Multiversal Chaos, Bo Deng Jan 2011

Neural Spike Renormalization. Part Ii — Multiversal Chaos, Bo Deng

Department of Mathematics: Faculty Publications

Reported here for the first time is a chaotic infinite-dimensional system which contains infinitely many copies of every deterministic and stochastic dynamical system of all finite dimensions. The system is the renormalizing operator of spike maps that was used in a previous paper to show that the first natural number 1 is a universal constant in the generation of metastable and plastic spike-bursts of a class of circuit models of neurons.


Symmetries Of The Central Vestibular System: Forming Movements For Gravity And A Three-Dimensional World, Gin Mccollum, Douglas Hanes Jul 2010

Symmetries Of The Central Vestibular System: Forming Movements For Gravity And A Three-Dimensional World, Gin Mccollum, Douglas Hanes

Mathematics and Statistics Faculty Publications and Presentations

Intrinsic dynamics of the central vestibular system (CVS) appear to be at least partly determined by the symmetries of its connections. The CVS contributes to whole-body functions such as upright balance and maintenance of gaze direction. These functions coordinate disparate senses (visual, inertial, somatosensory, auditory) and body movements (leg, trunk, head/neck, eye). They are also unified by geometric conditions. Symmetry groups have been found to structure experimentally-recorded pathways of the central vestibular system. When related to geometric conditions in three-dimensional physical space, these symmetry groups make sense as a logical foundation for sensorimotor coordination.


Metastability And Plasticity In A Conceptual Model Of Neurons, Bo Deng Jan 2010

Metastability And Plasticity In A Conceptual Model Of Neurons, Bo Deng

Department of Mathematics: Faculty Publications

For a new class of neuron models we demonstrate here that typical membrane action potentials and spike-bursts are only transient states but appear to be asymptotically stable; and yet such metastable states are plastic — being able to dynamically change from one action potential to another with different pulse frequencies and from one spike-burst to another with different spike-per-burst numbers. The pulse and spike-burst frequencies change with individual ions’ pump currents while their corresponding metastable-plastic states maintain the same transmembrane voltage and current profiles in range. It is also demonstrated that the plasticity requires two one-way ion pumps operating in …


Conceptual Circuit Models Of Neurons, Bo Deng Jan 2009

Conceptual Circuit Models Of Neurons, Bo Deng

Department of Mathematics: Faculty Publications

A systematic circuit approach tomodel neurons with ion pump is presented here by which the voltage-gated current channels are modeled as conductors, the diffusion-induced current channels are modeled as negative resistors, and the one-way ion pumps are modeled as one-way inductors. The newly synthesized models are different from the type of models based on Hodgkin-Huxley (HH) approach which aggregates the electro, the diffusive, and the pump channels of each ion into one conductance channel. We show that our new models not only recover many known properties of the HH type models but also exhibit some new that cannot be extracted …


An Optimal Brain Can Be Composed Of Conflicting Agents, Adi Livnat, Nicholas Pippenger Jan 2006

An Optimal Brain Can Be Composed Of Conflicting Agents, Adi Livnat, Nicholas Pippenger

All HMC Faculty Publications and Research

Many behaviors have been attributed to internal conflict within the animal and human mind. However, internal conflict has not been reconciled with evolutionary principles, in that it appears maladaptive relative to a seamless decision-making process. We study this problem through a mathematical analysis of decision-making structures. We find that, under natural physiological limitations, an optimal decision-making system can involve “selfish” agents that are in conflict with one another, even though the system is designed for a single purpose. It follows that conflict can emerge within a collective even when natural selection acts on the level of the collective only.