Open Access. Powered by Scholars. Published by Universities.®

Virology Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Series

Papovaviridae

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Virology

The Amino-Terminal Functions Of The Simian Virus 40 Large T Antigen Are Required To Overcome Wild-Type P53-Mediated Growth Arrest Of Cells., Robin S. Quartin, Charles N. Cole, James M. Pipas, Arnold J. Levine Mar 1994

The Amino-Terminal Functions Of The Simian Virus 40 Large T Antigen Are Required To Overcome Wild-Type P53-Mediated Growth Arrest Of Cells., Robin S. Quartin, Charles N. Cole, James M. Pipas, Arnold J. Levine

Dartmouth Scholarship

High levels of the p53 tumor suppressor protein can block progression through the cell cycle. A model system for the study of the mechanism of action of wild-type p53 is a cell line (T64-7B) derived from rat embryo fibroblasts transformed by activated ras and a temperature-sensitive murine p53 gene. At 37 to 39 degrees C, the murine p53 protein is in a mutant conformation and the cells actively divide, whereas at 32 degrees C, the protein has a wild-type conformation and the cells arrest in the G1 phase of the cell cycle. Wild-type simian virus 40 large T antigen and …


Efficient Transcriptional Activation Of Many Simple Modular Promoters By Simian Virus 40 Large T Antigen., Philip W. Rice, Charles N. Cole Nov 1993

Efficient Transcriptional Activation Of Many Simple Modular Promoters By Simian Virus 40 Large T Antigen., Philip W. Rice, Charles N. Cole

Dartmouth Scholarship

Simian virus 40 (SV40) large T antigen is a multifunctional protein which plays central roles during both lytic and transforming infections by SV40. It is a potent transcriptional activator and increases expression from the SV40 late promoter and from several cellular promoters. To understand better the transcriptional activation activity of large T antigen, we examined its ability to transactivate a set of simple modular promoters containing one of four upstream activation sequences coupled with one of three different TATA box sequences originally constructed and studied by Taylor and Kingston (Mol. Cell. Biol. 10:165-175, 1990). Large T antigen activated transcription from …


The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole Dec 1991

The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole

Dartmouth Scholarship

The large T antigen encoded by simian virus 40 (SV40) plays essential roles in the infection of permissive cells, leading to production of progeny virions, and in the infection of nonpermissive cells, leading to malignant transformation. Primary mouse embryo fibroblasts (MEFs) are nonpermissive for SV40, and infection by wild-type SV40 leads to immortalization and transformation of a small percentage of infected cells. We examined the ability of an extensive set of mutants whose lesions affect SV40 large T antigen to immortalize MEFs. We found that immortalization activity was retained by all mutants whose lesions are located upstream of codon 346. …


Mapping The Transcriptional Transactivation Function Of Simian Virus 40 Large T Antigen., Jiyue Y. Zhu, Philip W. Rice, Michele Chamberlain, Charles N. Cole Jun 1991

Mapping The Transcriptional Transactivation Function Of Simian Virus 40 Large T Antigen., Jiyue Y. Zhu, Philip W. Rice, Michele Chamberlain, Charles N. Cole

Dartmouth Scholarship

T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T …


Simian Virus 40 Host Range/Helper Function Mutations Cause Multiple Defects In Viral Late Gene Expression., Terryl Stacy, Michele Chamberlain, Charles N. Cole Dec 1989

Simian Virus 40 Host Range/Helper Function Mutations Cause Multiple Defects In Viral Late Gene Expression., Terryl Stacy, Michele Chamberlain, Charles N. Cole

Dartmouth Scholarship

Simian virus 40 (SV40) deletion mutants dlA2459 and dlA2475 express T antigens that lack the normal carboxy terminus. These mutants are called host range/helper function (hr/hf) mutants because they form plaques at 37 degrees C on BSC-1 and Vero monkey kidney cell lines but not on CV-1p monkey kidney cells. Wild-type SV40 can provide a helper function to permit growth of human adenoviruses in monkey kidney cells; the hr/hf mutants cannot. Progeny yields of hr/hf mutants are also cold sensitive in all cell lines tested. Patterns of viral macromolecular synthesis in three cell lines (Vero, BSC-1, and CV-1) at three …


Linker Insertion Mutants Of Simian Virus 40 Large T Antigen That Show Trans-Dominant Interference With Wild-Type Large T Antigen Map To Multiple Sites Within The T-Antigen Gene., Jiyue Y. Zhu, Charles N. Cole Nov 1989

Linker Insertion Mutants Of Simian Virus 40 Large T Antigen That Show Trans-Dominant Interference With Wild-Type Large T Antigen Map To Multiple Sites Within The T-Antigen Gene., Jiyue Y. Zhu, Charles N. Cole

Dartmouth Scholarship

Linker insertion mutants affecting the simian virus 40 (SV40) large tumor (T) antigen were constructed by inserting a 12-base-pair oligonucleotide linker into restriction endonuclease cleavage sites located within the early region of SV40. One mutant, with the insertion at amino acid 5, was viable in CV-1p and BSC-1 cells, indicating that sequences very close to the amino terminus of large T could be altered without affecting the lytic infection cycle of SV40. All other mutants affecting large T were not viable. In complementation assays between the linker insertion mutants and either a late-gene mutant, dlBC865, or a host range/helper function …