Open Access. Powered by Scholars. Published by Universities.®

Virology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Virology

A Tail Of Two Phages: Genomic And Functional Analysis Of Listeria Monocytogenes Phages Vb_Lmos_188 And Vb_Lmos_293 Reveal The Receptor-Binding Proteins Involved In Host Specificity, Aidan Casey, Kieran Jordan, Horst Neve, Aidan Coffey, Olivia Mcauliffe Oct 2015

A Tail Of Two Phages: Genomic And Functional Analysis Of Listeria Monocytogenes Phages Vb_Lmos_188 And Vb_Lmos_293 Reveal The Receptor-Binding Proteins Involved In Host Specificity, Aidan Casey, Kieran Jordan, Horst Neve, Aidan Coffey, Olivia Mcauliffe

Department of Biological Sciences Publications

The physical characteristics of bacteriophages establish them as viable candidates for downstream development of pathogen detection assays and biocontrol measures. To utilize phages for such purposes, a detailed knowledge of their host interaction mechanisms is a prerequisite. There is currently a wealth of knowledge available concerning Gram-negative phage-host interaction, but little by comparison for Gram-positive phages and Listeria phages in particular. In this research, the lytic spectrum of two recently isolated Listeria monocytogenes phages (vB_LmoS_188 and vB_LmoS_293) was determined, and the genomic basis for their observed serotype 4b/4e host-specificity was investigated using comparative genomics. The late tail genes of these …


Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib Aug 2015

Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib

Dartmouth Scholarship

STING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING(-/-)) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING(-/-) mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal …


Selective Involvement Of The Checkpoint Regulator Vista In Suppression Of B-Cell, But Not T-Cell, Responsiveness By Monocytic Myeloid-Derived Suppressor Cells From Mice Infected With An Immunodeficiency-Causing Retrovirus, Kathy A. Green, Li Wang, Randolph J. Noelle, William R. Green Jul 2015

Selective Involvement Of The Checkpoint Regulator Vista In Suppression Of B-Cell, But Not T-Cell, Responsiveness By Monocytic Myeloid-Derived Suppressor Cells From Mice Infected With An Immunodeficiency-Causing Retrovirus, Kathy A. Green, Li Wang, Randolph J. Noelle, William R. Green

Dartmouth Scholarship

Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.