Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Metabolism

2022

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

The Role Of L-Alanine Signaling In Aspergillus Fumigatus Biofilm Adherence, Carbon Catabolism, And Echinocandin Susceptibility., Joshua D. Kerkaert Jul 2022

The Role Of L-Alanine Signaling In Aspergillus Fumigatus Biofilm Adherence, Carbon Catabolism, And Echinocandin Susceptibility., Joshua D. Kerkaert

Dartmouth College Ph.D Dissertations

Aspergillus fumigatus is a saprophytic filamentous fungus that participates in environmental carbon and nitrogen cycles through the degradation of complex organic substrates. In addition to its ecological role, A. fumigatus is the primary causative agent of a spectrum of diseases depending on the immune status of the individual, the most lethal of which is invasive aspergillosis (IA). Treatment strategies for IA are limited and far too frequently fail. Despite the high rates of treatment failure, antifungal resistance remains relatively low, albeit rising at a concerning rate. Insights into this discrepancy between the rate of treatment failure and the rate of …


Links Between Electrophilic Stress And Antifungal Resistance In Pathogenic Candida Species, Amy R. Biermann Jan 2022

Links Between Electrophilic Stress And Antifungal Resistance In Pathogenic Candida Species, Amy R. Biermann

Dartmouth College Ph.D Dissertations

Collectively, Candida species are the most prevalent cause of both superficial and invasive fungal infections worldwide. Invasive Candida infections have a high mortality rate and predominantly affect individuals with underlying diseases, such as diabetes, HIV, or cancer. Unfortunately, many invasive Candida infections are recalcitrant to antifungal treatment, while intrinsically multidrug-resistant pathogens, like Candida auris, are increasing in prevalence. Although the canonical mechanisms of antifungal resistance in Candida species are well established, i.e., overexpression of efflux pumps and overexpression of or mutations in genes encoding drug targets, factors affecting the natural evolution and regulation of resistance mechanisms remain poorly understood. …