Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

Breaking Virulent: The Coincidental Evolution Of Virulence Factors In Bacteria., Rhiannon Emmanuelle Cecil Dec 2023

Breaking Virulent: The Coincidental Evolution Of Virulence Factors In Bacteria., Rhiannon Emmanuelle Cecil

Electronic Theses and Dissertations

Understanding how innocuous organisms can evolve to be pathogenic to humans is of increasing global concern. Further, understanding how existing pathogens may evolved to be more virulent is also vital to our ability to provide healthcare to people afflicted with diseases that promote chronic bacterial infections, such as cystic fibrosis. With the rise of antibiotic resistance in both bacteria and fungi it is paramount that new therapeutics are identified. Understanding what mutations occur that result in increased virulence in microbes can potentially provide new targets for antimicrobial drugs to combat antibiotic resistance. The Coincidental Evolution Hypothesis is a fundamental hypothesis …


The Effects Of Nutrient Availability On Pseudomonas Aeruginosa Mono And Co-Culture Biofilms, Julie T. Nguyen, Deborah R. Yoder-Himes Ph.D., Rhiannon Cecil Jan 2020

The Effects Of Nutrient Availability On Pseudomonas Aeruginosa Mono And Co-Culture Biofilms, Julie T. Nguyen, Deborah R. Yoder-Himes Ph.D., Rhiannon Cecil

Undergraduate Arts and Research Showcase

Cystic Fibrosis (CF) is a genetic disorder characterized by faulty ion channels and result in thick mucus accumulation, especially in lungs. Mucus buildup provides ideal conditions for bacterial infections. Pseudomonas aeruginosa (PA) is the second most prevalent bacterium isolated from people with CF and has a high clinical importance. Most CF pathogens form biofilms which make treatment of infections difficult. Biofilms are clusters of cells attached to a surface enclosed in a structured matrix. These structures are a means to provide shelter for bacteria from the environment, especially antibiotics and the immune system. PA alone can form these biofilms, but …


Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke Nov 2016

Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative, metabolically versatile, opportunistic pathogen that exhibits a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability is in part mediated by two-component systems (TCS) that play a crucial role in regulating virulence mechanisms, metabolism and antibiotic resistance. Our sequence analysis of the P. aeruginosa PAO1 genome revealed the presence of two open reading frames, mifS and mifR, which encodes putative TCS proteins, a histidine sensor kinase MifS and a response regulator MifR, respectively. This two-gene operon was found immediately upstream of the poxAB operon, where poxB encodes …


Characterization Of The Poxab Operon Encoding A Class D Carbapenemase In Pseudomonas Aeruginosa,, Diansy Zincke Mar 2015

Characterization Of The Poxab Operon Encoding A Class D Carbapenemase In Pseudomonas Aeruginosa,, Diansy Zincke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation …