Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Pathogenic Microbiology

Campylobacter Ureolyticus: An Emerging Gastrointestinal Pathogen?, Susan Bullman, Daniel Corcoran, James O'Leary, Brigid Lucey, Deirdre Byrne, Roy D. Sleator Dec 2010

Campylobacter Ureolyticus: An Emerging Gastrointestinal Pathogen?, Susan Bullman, Daniel Corcoran, James O'Leary, Brigid Lucey, Deirdre Byrne, Roy D. Sleator

Department of Biological Sciences Publications

A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBios, a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen.


Analysis Of The Clear Plaque Phenotype Of The Bacteriophage Hk75, Phani Chandrika Kunapuli Dec 2010

Analysis Of The Clear Plaque Phenotype Of The Bacteriophage Hk75, Phani Chandrika Kunapuli

Masters Theses & Specialist Projects

The growth of bacteriophage HK75 is inhibited by specific mutations in the zinc binding domain of the host RNA polymerase beta prime subunit. It shares this rare property with bacteriophage HK022 and other phages that use RNA mediated antitermination to promote early gene expression. Recent genomic analysis of HK75 and HK022 has confirmed the relatedness of these two phages and place HK75 in the lambdoid family of bacteriophages. Lambdoid phages are temperate and can adopt a lytic or lysogenic lifestyle upon infection of a suitable host. However, HK75 only forms clear plaques and thus appears to be defective in its …


The Chitobiose Transporter, Chbc, Is Required For Chitin Utilization In Borrelia Burgdorferi, David Nelson Dec 2009

The Chitobiose Transporter, Chbc, Is Required For Chitin Utilization In Borrelia Burgdorferi, David Nelson

David R. Nelson

Background: The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the …