Open Access. Powered by Scholars. Published by Universities.®

Organismal Biological Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organismal Biological Physiology

Loss Of Marv1 Promotes Chop Signaling In Mouse Liver, Shad Anthony Mitchell Jul 2018

Loss Of Marv1 Promotes Chop Signaling In Mouse Liver, Shad Anthony Mitchell

Graduate School of Biomedical Sciences Theses and Dissertations

Metabolic syndrome (MetS) is a term used to define a set of metabolic diseases: obesity, type 2 diabetes (T2D), hyperlipidemia, hypertension, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic hepatosteatosis (NASH). Those with MetS have a higher incidence of cardiovascular disease and stroke. Current drug treatments for MetS treat the individual pathologies associated with the diseases, rather than directly targeting MetS as a whole. We hypothesize that the inhibition of a ubiquitous lipid transporter known as ARV1 can improve pathologies associated with MetS. To test this hypothesis, we utilized liver tissue from mARV1 knockout mice fed a high-fat diet and examined …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …