Open Access. Powered by Scholars. Published by Universities.®

Environmental Microbiology and Microbial Ecology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Environmental Microbiology and Microbial Ecology

Detection Of Beta-Lactamase Variants In Municipal Wastewater And Fresh Water, Sunil Pandey Jan 2019

Detection Of Beta-Lactamase Variants In Municipal Wastewater And Fresh Water, Sunil Pandey

Masters Theses

The occurrence and spread of antibiotic-resistant genes (ARGs) are pressing public health problems worldwide. A key factor contributing to the spread of ARGs is lateral gene transfer. Wastewater treatment plants (WWTPs) are measured hot spots of microbial diversity and resistance because they receive polluted wastewater from diverse sources and contain a variety of different environments with dense bacterial loads. Due to the overuse of antibiotics the genetic capacities of microbes have profited. This helps every source of resistance gene and every means of horizontal gene transmission to develop the multiple mechanism of resistance to each antibiotic used clinically, agriculturally, or …


Effects Of Treated Wastewater Effluent On Microbial Community Structure In A Natural Receiving Aquatic System, Matthew D. Hladilek Jan 2015

Effects Of Treated Wastewater Effluent On Microbial Community Structure In A Natural Receiving Aquatic System, Matthew D. Hladilek

Masters Theses

Despite our dependency on treatment facilities to condition wastewater for eventual release to the environment, our knowledge regarding the effects of treated water on the local watershed is extremely limited. Responses of these lotic systems to the treated wastewater effluent have been traditionally investigated by examining the benthic macroinvertebrate assemblages and community structure; however, these studies do not address the microbial diversity of the water systems. In the present study, planktonic and benthic bacterial community structure were examined at fourteen sites (from 60 m upstream to 12,100 m downstream) and at two time points along an aquatic system receiving treated …


Plant-Microbial Interactions Change Along A Prairie Restoration Chronosequence, Anna Herzberger May 2014

Plant-Microbial Interactions Change Along A Prairie Restoration Chronosequence, Anna Herzberger

Undergraduate Honors Theses

Soil microbial communities are critical in determining the performance and density of species in plant communities. However, their role in regulating the success of restorations is much less clear. This study assessed the ability of soil microbial communities to regulate the growth and performance of two potentially dominant grasses and two common forbs in prairie restorations. Specifically, I examined the effects of soil microbial communities along a restoration chronosequence from agricultural fields to remnant prairies using experimentally inoculated soils. The two grass species, Andropogon gerardii and Sorghastrum nutans, produced larger biomass with the agricultural inoculates and experienced a decline …


Phenotypic And Genotypic Characterization Of Escherichia Coli Isolated From Untreated Surface Waters, Steven L. Daniel, Kai F. Hung, Kristopher J. Janezic, Blake Ferry, Eric W. Hendricks, Brian A. Janiga, Tiffany Johnson, Samantha Murphy, Morgan E. Roberts, Sarah M. Scott, Alexandra N. Theisen Jan 2013

Phenotypic And Genotypic Characterization Of Escherichia Coli Isolated From Untreated Surface Waters, Steven L. Daniel, Kai F. Hung, Kristopher J. Janezic, Blake Ferry, Eric W. Hendricks, Brian A. Janiga, Tiffany Johnson, Samantha Murphy, Morgan E. Roberts, Sarah M. Scott, Alexandra N. Theisen

Steven L. Daniel

A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli …


Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven L. Daniel Jan 2009

Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven L. Daniel

Steven L. Daniel

Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene (rxp gene) commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-tolerant cultivars are commonly planted today, there has been no information about whether these new cultivars have bacterial pustule resistance. The goal of this study was to screen glyphosate-tolerant soybean cultivars for resistance to X. axonopodis pv. glycines. Three experiments were completed to evaluate resistance. In experiment 1, 525 commercial glyphosate-tolerant cultivars from 2001 were inoculated with X. axonopodis pv. …


Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven Daniel Jan 2009

Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven Daniel

Faculty Research & Creative Activity

Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene (rxp gene) commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-tolerant cultivars are commonly planted today, there has been no information about whether these new cultivars have bacterial pustule resistance. The goal of this study was to screen glyphosate-tolerant soybean cultivars for resistance to X. axonopodis pv. glycines. Three experiments were completed to evaluate resistance. In experiment 1, 525 commercial glyphosate-tolerant cultivars from 2001 were inoculated with X. axonopodis pv. …


Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven L. Daniel Jan 2009

Evaluation Of Glyphosate-Tolerant Soybean Cultivars For Resistance To Bacterial Pustule, Lopa Goradia, Glen Hartman, Steven L. Daniel

Faculty Research & Creative Activity

Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene (rxp gene) commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-tolerant cultivars are commonly planted today, there has been no information about whether these new cultivars have bacterial pustule resistance. The goal of this study was to screen glyphosate-tolerant soybean cultivars for resistance to X. axonopodis pv. glycines. Three experiments were completed to evaluate resistance. In experiment 1, 525 commercial glyphosate-tolerant cultivars from 2001 were inoculated with X. axonopodis pv. …


Old Acetogens, New Light, Steven L. Daniel, Harold L. Drake, Anita S. Gößner Jan 2008

Old Acetogens, New Light, Steven L. Daniel, Harold L. Drake, Anita S. Gößner

Steven L. Daniel

Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO2-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and …


Old Acetogens, New Light, Steven L. Daniel, Harold L. Drake, Anita S. Gößner Jan 2008

Old Acetogens, New Light, Steven L. Daniel, Harold L. Drake, Anita S. Gößner

Faculty Research & Creative Activity

Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO2-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and …


Old Acetogens, New Light, Steven Daniel, Harold Drake, Anita Gößner Jan 2008

Old Acetogens, New Light, Steven Daniel, Harold Drake, Anita Gößner

Faculty Research & Creative Activity

Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO2-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel

Steven L. Daniel

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan J. Culbertson, Jaymie Krone, Erastus Gatebe, Norbert C. Furumo, Steven L. Daniel

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Jaymie Krone, Norbert Furumo Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Jaymie Krone, Norbert Furumo

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan Culbertson, Jaymie Krone, Erastus Gatebe, Norbert Furumo, Steven Daniel Oct 2007

Impact Of Carbon Sources On Growth And Oxalate Synthesis By The Phytopathogenic Fungus Sclerotinia Sclerotiorum, Bryan Culbertson, Jaymie Krone, Erastus Gatebe, Norbert Furumo, Steven Daniel

Faculty Research & Creative Activity

The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic …


Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven L. Daniel, G. L. Hartman, E. D. Wagner, M. J. Plewa Jul 2007

Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven L. Daniel, G. L. Hartman, E. D. Wagner, M. J. Plewa

Steven L. Daniel

No abstract provided.


Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven Daniel, G. Hartman, E. Wagner, M. Plewa Jul 2007

Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven Daniel, G. Hartman, E. Wagner, M. Plewa

Faculty Research & Creative Activity

No abstract provided.


Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven L. Daniel, G. L. Hartman, E. D. Wagner, M. J. Plewa Jul 2007

Mammalian Cell Cytotoxicity Analysis Of Soybean Rust Fungicides, Steven L. Daniel, G. L. Hartman, E. D. Wagner, M. J. Plewa

Faculty Research & Creative Activity

No abstract provided.


Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo

Steven L. Daniel

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.


Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven Daniel, Bryan Culbertson, Norbert Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven Daniel, Bryan Culbertson, Norbert Furumo

Faculty Research & Creative Activity

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.


Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo May 2007

Impact Of Nutritional Supplements And Monosaccharides On Growth, Oxalate Accumulation, And Culture Ph By Sclerotinia Sclerotiorum, Steven L. Daniel, Bryan J. Culbertson, Norbert C. Furumo

Faculty Research & Creative Activity

Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2–3 mM oxalate, and a final culture pH of 4.2–4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8–3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d-mannose, l-arabinose, or d-xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (∼21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (∼7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum.


Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven L. Daniel, Christine Pilsl, Harold L. Drake Jan 2007

Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven L. Daniel, Christine Pilsl, Harold L. Drake

Steven L. Daniel

The microbial consumption of oxalate was examined under anaerobic conditions in soil suspensions at 15-20 degree C. With soil (horizon Ah, pH 6.4) from a beech forest, microbial consumption of added oxalate (15 mM) began after 10 days, and oxalate was totally consumed by day 20. The presence of supplemental electron donors (acetate, glucose, vanillate, or hydrogen) or electron acceptors (nitrate or sulfate) did not significantly influence anaerobic oxalate consumption, whereas supplementation of soil suspensions with CO2/bicarbonate totally repressed oxalate consumption. Thus, CO2-, nitrate- or sulfate-respiring bacteria were apparently not active in the anaerobic consumption of oxalate in these soil …


Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven Daniel, Christine Pilsl, Harold Drake Jan 2007

Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven Daniel, Christine Pilsl, Harold Drake

Faculty Research & Creative Activity

The microbial consumption of oxalate was examined under anaerobic conditions in soil suspensions at 15-20 degree C. With soil (horizon Ah, pH 6.4) from a beech forest, microbial consumption of added oxalate (15 mM) began after 10 days, and oxalate was totally consumed by day 20. The presence of supplemental electron donors (acetate, glucose, vanillate, or hydrogen) or electron acceptors (nitrate or sulfate) did not significantly influence anaerobic oxalate consumption, whereas supplementation of soil suspensions with CO2/bicarbonate totally repressed oxalate consumption. Thus, CO2-, nitrate- or sulfate-respiring bacteria were apparently not active in the anaerobic consumption of oxalate in these soil …


Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven L. Daniel, Christine Pilsl, Harold L. Drake Jan 2007

Anaerobic Oxalate Consumption By Microorganisms In Forest Soils, Steven L. Daniel, Christine Pilsl, Harold L. Drake

Faculty Research & Creative Activity

The microbial consumption of oxalate was examined under anaerobic conditions in soil suspensions at 15-20 degree C. With soil (horizon Ah, pH 6.4) from a beech forest, microbial consumption of added oxalate (15 mM) began after 10 days, and oxalate was totally consumed by day 20. The presence of supplemental electron donors (acetate, glucose, vanillate, or hydrogen) or electron acceptors (nitrate or sulfate) did not significantly influence anaerobic oxalate consumption, whereas supplementation of soil suspensions with CO2/bicarbonate totally repressed oxalate consumption. Thus, CO2-, nitrate- or sulfate-respiring bacteria were apparently not active in the anaerobic consumption of oxalate in these soil …


Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold L. Drake, Steven L. Daniel Apr 2004

Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold L. Drake, Steven L. Daniel

Steven L. Daniel

Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) orWood–Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.


Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold Drake, Steven Daniel Apr 2004

Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold Drake, Steven Daniel

Faculty Research & Creative Activity

Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) orWood–Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.


Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold L. Drake, Steven L. Daniel Apr 2004

Physiology Of The Thermophilic Acetogen Moorella Thermoacetica, Harold L. Drake, Steven L. Daniel

Faculty Research & Creative Activity

Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) orWood–Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.


Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven L. Daniel, Christine Pilsl, Harold L. Drake Feb 2004

Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven L. Daniel, Christine Pilsl, Harold L. Drake

Steven L. Daniel

Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO2, KNO3, or Na2S2O3. Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 μmol oxalate oxidized min−1 mg protein−1. Extracts also catalyzed the formate-dependent reduction of NADP+; however, oxalate-dependent reduction of NADP+ was negligible. Oxalate- or formate-dependent reduction …


Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven Daniel, Christine Pilsl, Harold Drake Feb 2004

Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven Daniel, Christine Pilsl, Harold Drake

Faculty Research & Creative Activity

Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO2, KNO3, or Na2S2O3. Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 μmol oxalate oxidized min−1 mg protein−1. Extracts also catalyzed the formate-dependent reduction of NADP+; however, oxalate-dependent reduction of NADP+ was negligible. Oxalate- or formate-dependent reduction …


Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven L. Daniel, Christine Pilsl, Harold L. Drake Feb 2004

Oxalate Metabolism By The Acetogenic Bacterium Moorella Thermoacetica, Steven L. Daniel, Christine Pilsl, Harold L. Drake

Faculty Research & Creative Activity

Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO2, KNO3, or Na2S2O3. Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 μmol oxalate oxidized min−1 mg protein−1. Extracts also catalyzed the formate-dependent reduction of NADP+; however, oxalate-dependent reduction of NADP+ was negligible. Oxalate- or formate-dependent reduction …


Microbial Degradation Of Oxalate In The Gastrointestinal Tracts Of Rats, Steven L. Daniel Aug 1987

Microbial Degradation Of Oxalate In The Gastrointestinal Tracts Of Rats, Steven L. Daniel

Steven L. Daniel

Rates of oxalate degradation by mixed bacterial populations in cecal contents from wlld rats ranged from 2.5 to 20.6 µmol/g (dry weight) per h. The oxalate-degrading activity in cecal contents from three strains of laboratory rats (Long-Evans, Wistar, and Sprague-Dawley) from four commercial breeders was generally lower, ranging from 1.8 to 3.5 µmollg (dry weight) of cecal contents per h. This activity did not increase when diets were supplemented with oxalate. Wben Sprague-Pawley rats from a fifth commercial breeder were fed an oxalate diet, rates of oxalate degradation in cecal contents increased from 2.0 to 23.1 µmollg (dry weight) per …