Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Microbiology

Bacteriophages As Beneficial Regulators Of The Mammalian Microbiome, Joseph W. Francis, Matthew Ingle, Todd Charles Wood Jul 2018

Bacteriophages As Beneficial Regulators Of The Mammalian Microbiome, Joseph W. Francis, Matthew Ingle, Todd Charles Wood

Proceedings of the International Conference on Creationism

Much of the research on viruses has concentrated on their disease causing ability. The creation model biomatrix theory predicts that viruses play a beneficial role in cells and organisms. In this report we present a new theory which proposes that mammalian phages (bacteriophages), the most abundant organism associated with mammals, guard and regulate growth of the mammalian microbiome. We base this theory on nearly a century of published evidence that demonstrates that phage can insert into the bacterial genome and cover the surface of bacteria. We propose that this “cloaking” of the bacterial cell surface is an elegant mechanism whereby …


Integrated Regulation Of Class Ii Human Endogenous Retroviruses In A Breast Cancer Cell Line, Yingguang Liu, Tam D. Nguyen Jul 2018

Integrated Regulation Of Class Ii Human Endogenous Retroviruses In A Breast Cancer Cell Line, Yingguang Liu, Tam D. Nguyen

Proceedings of the International Conference on Creationism

Endogenous retroviruses (ERVs) are still regarded as foreign invaders by most biologists. Because of structural and positional homology of ERVs in human and ape genomes, they have been considered molecular evidences of common ancestry. Using a breast cancer cell line, we analyzed the regulatory features of a group of human endogenous retroviruses (HERV-K), and found that they contain multiple sequence motifs subjecting them to regulation by sex hormones, a stem cell-specific transcription factor (OCT4), and DNA methylation. Mutation of the OCT4 motif abrogates their response to sex hormones, while methylation of a progesterone-response element enhances receptor-binding. We also found that …


E,E-Farnesol Inhibits Swarming Motility In Burkholderia Cepacia Through Rhamnolipid Production, Stephanie E. Nicholls, Alayna N. Sanderson, Andrea P. Schwartz, Lauren E. Ward, Jessica N. Weisensee, Molly Yandrofski, Tracy L. Collins Apr 2017

E,E-Farnesol Inhibits Swarming Motility In Burkholderia Cepacia Through Rhamnolipid Production, Stephanie E. Nicholls, Alayna N. Sanderson, Andrea P. Schwartz, Lauren E. Ward, Jessica N. Weisensee, Molly Yandrofski, Tracy L. Collins

The Research and Scholarship Symposium (2013-2019)

Burkholderia cepacia and Candida albicans both exhibit cell-to-cell communication through the use of quorum-sensing molecules (QSM) known as autoinducers. E,E-farnesol is a QSM produced by C. albicans which regulates its conversion from yeast to mycelium. Because there is a positive correlation between the presence of B. cepacia and C. albicans in the lungs of individuals with cystic fibrosis (CF), we examined whether E,E-farnesol had an effect on swarming motility in B. cepacia. Swarming motility was inhibited when B. cepacia was exposed to 250 µM of E,E-farnesol. In addition, there was a 26.8% decrease in rhamnolipid production when cells were grown …


The Effect Of Photoactivated Tmp On Burkholderia Cepacia Biofilms, Reyna G. Osorio, Chandra N. Swiech, Tracy L. Collins Apr 2017

The Effect Of Photoactivated Tmp On Burkholderia Cepacia Biofilms, Reyna G. Osorio, Chandra N. Swiech, Tracy L. Collins

The Research and Scholarship Symposium (2013-2019)

Burkholderia cepacia is an opportunistic pathogen that causes infections in immunocompromised individuals such as cystic fibrosis patients. B. cepacia infections are typically characterized by the formation of complex communities of cells known as biofilms. Because B. cepacia biofilms are difficult to eradicate using antibiotics, it is important to pursue alternative treatment methods. Photodynamic therapy (PDT) is a type of therapy that uses light, a photosensitizer, and oxygen to elicit cell death through the production of reactive oxygen species. PDT has been shown in previous studies to be successful in killing both Pseudomonas aeruginosa and Staphylococcus aureus. In this study, we …