Open Access. Powered by Scholars. Published by Universities.®

Immunology of Infectious Disease Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Thesis and Dissertation Repository

Superantigen

Articles 1 - 2 of 2

Full-Text Articles in Immunology of Infectious Disease

Rapid Regulatory And Effector Immune Responses In Toxic Shock Syndrome, Peter Anthony Szabo Mar 2017

Rapid Regulatory And Effector Immune Responses In Toxic Shock Syndrome, Peter Anthony Szabo

Electronic Thesis and Dissertation Repository

Toxic shock syndrome (TSS) is an acute, potentially fatal condition characterized by high-grade fever, hypotensive shock and systemic inflammation. It is caused by exposure to staphylococcal and streptococcal superantigens (SAgs), which can activate up to 50% of T cells resulting in a hyperinflammatory ‘cytokine storm’ within hours. This inflammatory cascade progresses to a life-threatening illness with alarming rapidity, and SAg-exposed individuals can develop multi-organ failure within hours of onset of symptoms. However, there are currently no available treatments that efficiently mitigate the cytokine storm, which drives TSS immunopathology. Therefore, identifying and understanding the critical components underlying this process should hold …


The Role Of Superantigens During Staphylococcus Aureus Nasal Colonization And Infection, Stacey Xu Oct 2014

The Role Of Superantigens During Staphylococcus Aureus Nasal Colonization And Infection, Stacey Xu

Electronic Thesis and Dissertation Repository

Superantigens (SAgs) are potent toxins produced by bacteria such as Staphylococcus aureus that function to overactivate T cells resulting in massive cytokine production and immune activation. Despite decades of research on the structure and function of these proteins, as well as their role in severe diseases such as toxic shock syndrome, the question as to why strains of S. aureus produce SAgs and the role that they play in the life cycle of these bacteria remains unanswered. The contribution of SAgs towards pathogenicity and bacterial survival in vivo were assessed using isogenic SAg deletion knockouts in conjunction with SAg-sensitive humanized …