Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Transcription Factors

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 29 of 29

Full-Text Articles in Genetics and Genomics

Meta-Analyses Identify Dna Methylation Associated With Kidney Function And Damage, Pascal Schlosser, Adrienne Tin, Pamela R Matias-Garcia, Chris H L Thio, Roby Joehanes, Hongbo Liu, Antoine Weihs, Zhi Yu, Anselm Hoppmann, Franziska Grundner-Culemann, Josine L Min, Adebowale A Adeyemo, Charles Agyemang, Johan Ärnlöv, Nasir A Aziz, Andrea Baccarelli, Murielle Bochud, Hermann Brenner, Monique M B Breteler, Cristian Carmeli, Layal Chaker, John C Chambers, Shelley A Cole, Josef Coresh, Tanguy Corre, Adolfo Correa, Simon R Cox, Niek De Klein, Graciela E Delgado, Arce Domingo-Relloso, Kai-Uwe Eckardt, Arif B Ekici, Karlhans Endlich, Kathryn L Evans, James S Floyd, Myriam Fornage, Lude Franke, Eliza Fraszczyk, Xu Gao, Xīn Gào, Mohsen Ghanbari, Sahar Ghasemi, Christian Gieger, Philip Greenland, Megan L Grove, Sarah E Harris, Gibran Hemani, Peter Henneman, Christian Herder, Steve Horvath, Lifang Hou, Mikko A Hurme, Shih-Jen Hwang, Marjo-Riitta Jarvelin, Sharon L R Kardia, Silva Kasela, Marcus E Kleber, Wolfgang Koenig, Jaspal S Kooner, Holly Kramer, Florian Kronenberg, Brigitte Kühnel, Terho Lehtimäki, Lars Lind, Dan Liu, Yongmei Liu, Donald M Lloyd-Jones, Kurt Lohman, Stefan Lorkowski, Ake T Lu, Riccardo E Marioni, Winfried März, Daniel L Mccartney, Karlijn A C Meeks, Lili Milani, Pashupati P Mishra, Matthias Nauck, Ana Navas-Acien, Christoph Nowak, Annette Peters, Holger Prokisch, Bruce M Psaty, Olli T Raitakari, Scott M Ratliff, Alex P Reiner, Sylvia E Rosas, Ben Schöttker, Joel Schwartz, Sanaz Sedaghat, Jennifer A Smith, Nona Sotoodehnia, Hannah R Stocker, Silvia Stringhini, Johan Sundström, Brenton R Swenson, Maria Tellez-Plaza, Joyce B J Van Meurs, Jana V Van Vliet-Ostaptchouk, Andrea Venema, Niek Verweij, Rosie M Walker, Matthias Wielscher, Juliane Winkelmann, Bruce H R Wolffenbuttel, Wei Zhao, Yinan Zheng, Marie Loh, Harold Snieder, Daniel Levy, Melanie Waldenberger, Katalin Susztak, Anna Köttgen, Alexander Teumer Dec 2021

Meta-Analyses Identify Dna Methylation Associated With Kidney Function And Damage, Pascal Schlosser, Adrienne Tin, Pamela R Matias-Garcia, Chris H L Thio, Roby Joehanes, Hongbo Liu, Antoine Weihs, Zhi Yu, Anselm Hoppmann, Franziska Grundner-Culemann, Josine L Min, Adebowale A Adeyemo, Charles Agyemang, Johan Ärnlöv, Nasir A Aziz, Andrea Baccarelli, Murielle Bochud, Hermann Brenner, Monique M B Breteler, Cristian Carmeli, Layal Chaker, John C Chambers, Shelley A Cole, Josef Coresh, Tanguy Corre, Adolfo Correa, Simon R Cox, Niek De Klein, Graciela E Delgado, Arce Domingo-Relloso, Kai-Uwe Eckardt, Arif B Ekici, Karlhans Endlich, Kathryn L Evans, James S Floyd, Myriam Fornage, Lude Franke, Eliza Fraszczyk, Xu Gao, Xīn Gào, Mohsen Ghanbari, Sahar Ghasemi, Christian Gieger, Philip Greenland, Megan L Grove, Sarah E Harris, Gibran Hemani, Peter Henneman, Christian Herder, Steve Horvath, Lifang Hou, Mikko A Hurme, Shih-Jen Hwang, Marjo-Riitta Jarvelin, Sharon L R Kardia, Silva Kasela, Marcus E Kleber, Wolfgang Koenig, Jaspal S Kooner, Holly Kramer, Florian Kronenberg, Brigitte Kühnel, Terho Lehtimäki, Lars Lind, Dan Liu, Yongmei Liu, Donald M Lloyd-Jones, Kurt Lohman, Stefan Lorkowski, Ake T Lu, Riccardo E Marioni, Winfried März, Daniel L Mccartney, Karlijn A C Meeks, Lili Milani, Pashupati P Mishra, Matthias Nauck, Ana Navas-Acien, Christoph Nowak, Annette Peters, Holger Prokisch, Bruce M Psaty, Olli T Raitakari, Scott M Ratliff, Alex P Reiner, Sylvia E Rosas, Ben Schöttker, Joel Schwartz, Sanaz Sedaghat, Jennifer A Smith, Nona Sotoodehnia, Hannah R Stocker, Silvia Stringhini, Johan Sundström, Brenton R Swenson, Maria Tellez-Plaza, Joyce B J Van Meurs, Jana V Van Vliet-Ostaptchouk, Andrea Venema, Niek Verweij, Rosie M Walker, Matthias Wielscher, Juliane Winkelmann, Bruce H R Wolffenbuttel, Wei Zhao, Yinan Zheng, Marie Loh, Harold Snieder, Daniel Levy, Melanie Waldenberger, Katalin Susztak, Anna Köttgen, Alexander Teumer

Journal Articles

Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. to extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. …


Characterization Of A Putative Helicase In Rifampicin Resistance Of Mycobacterium Abscessus:, Aavrati Saxena May 2021

Characterization Of A Putative Helicase In Rifampicin Resistance Of Mycobacterium Abscessus:, Aavrati Saxena

Legacy Theses & Dissertations (2009 - 2024)

Mycobacterium abscessus (Mab), a non-tuberculous environmental mycobacterium is one of the emerging pathogens. The number of Mab infections has doubled in the past decade. It is also an opportunistic pathogen usually infecting immunocompromised individuals and causing numerous skin and soft tissue infections. It commonly causes lung infections in people who are already infected with one or other lung infections such as tuberculosis. The treatment of Mab infections is difficult because of its intrinsic resistance to most of the antibiotics available. This project studies Rifampicin (RIF) resistance in Mab, as RIF is a well-established treatment for other mycobacterial infections including tuberculosis, …


Systematic Comparison Of Sea Urchin And Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated In Early Development., Gregory A Cary, Brenna S Mccauley, Olga Zueva, Joseph Pattinato, William J R Longabaugh, Veronica F Hinman Dec 2020

Systematic Comparison Of Sea Urchin And Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated In Early Development., Gregory A Cary, Brenna S Mccauley, Olga Zueva, Joseph Pattinato, William J R Longabaugh, Veronica F Hinman

Articles, Abstracts, and Reports

The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea …


Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen Sep 2019

Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen

Yong Chen

Detecting binding motifs of combinatorial transcription factors (TFs) from chromatin immunoprecipitation sequencing (ChIP-seq) experiments is an important and challenging computational problem for understanding gene regulations. Although a number of motif-finding algorithms have been presented, most are either time consuming or have sub-optimal accuracy for processing large-scale datasets. In this article, we present a fully parallelized algorithm for detecting combinatorial motifs from ChIP-seq datasets by using Fisher combined method and OpenMP parallel design. Large scale validations on both synthetic data and 350 ChIP-seq datasets from the ENCODE database showed that FisherMP has not only super speeds on large datasets, but also …


Equine Arteritis Virus Long-Term Persistence Is Orchestrated By Cd8+ T Lymphocyte Transcription Factors, Inhibitory Receptors, And The Cxcl16/Cxcr6 Axis, Mariano Carossino, Pouya Dini, Theodore S. Kalbfleisch, Alan T. Loynachan, Igor F. Canisso, R. Frank Cook, Peter J. Timoney, Udeni B. R. Balasuriya Jul 2019

Equine Arteritis Virus Long-Term Persistence Is Orchestrated By Cd8+ T Lymphocyte Transcription Factors, Inhibitory Receptors, And The Cxcl16/Cxcr6 Axis, Mariano Carossino, Pouya Dini, Theodore S. Kalbfleisch, Alan T. Loynachan, Igor F. Canisso, R. Frank Cook, Peter J. Timoney, Udeni B. R. Balasuriya

Veterinary Science Faculty Publications

Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated …


Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen Jun 2019

Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen

Faculty Scholarship for the College of Science & Mathematics

Detecting binding motifs of combinatorial transcription factors (TFs) from chromatin immunoprecipitation sequencing (ChIP-seq) experiments is an important and challenging computational problem for understanding gene regulations. Although a number of motif-finding algorithms have been presented, most are either time consuming or have sub-optimal accuracy for processing large-scale datasets. In this article, we present a fully parallelized algorithm for detecting combinatorial motifs from ChIP-seq datasets by using Fisher combined method and OpenMP parallel design. Large scale validations on both synthetic data and 350 ChIP-seq datasets from the ENCODE database showed that FisherMP has not only super speeds on large datasets, but also …


Molecular Evolutionary Trends And Feeding Ecology Diversification In The Hemiptera, Anchored By The Milkweed Bug Genome, Kristen A. Panfilio, Iris M. Vargas Jentzsch, Joshua B. Benoit, Deniz Erezyilmaz, Yuichiro Suzuki, Stefano Colella, Hugh M. Robertson, Monica F. Poelchau, Robert M. Waterhouse, Panagiotis Ioannidis, Matthew T. Weirauch, Daniel S. T. Hughes, Shwetha C. Murali, John H. Werren, Chris G. C. Jacobs, Elizabeth J. Duncan, David Armisén, Barbara M. I. Vreede, Patrice Baa-Puyoulet, Chloé S. Berger, Chun-Che Chang, Hsu Chao, Mei-Ju M. Chen, Yen-Ta Chen, Christopher P. Childers, Ariel D. Chipman, Andrew G. Cridge, Antonin J. J. Crumière, Peter K. Dearden, Elise M. Didion, Subba Reddy Palli, Jayendra Nath Shukla Apr 2019

Molecular Evolutionary Trends And Feeding Ecology Diversification In The Hemiptera, Anchored By The Milkweed Bug Genome, Kristen A. Panfilio, Iris M. Vargas Jentzsch, Joshua B. Benoit, Deniz Erezyilmaz, Yuichiro Suzuki, Stefano Colella, Hugh M. Robertson, Monica F. Poelchau, Robert M. Waterhouse, Panagiotis Ioannidis, Matthew T. Weirauch, Daniel S. T. Hughes, Shwetha C. Murali, John H. Werren, Chris G. C. Jacobs, Elizabeth J. Duncan, David Armisén, Barbara M. I. Vreede, Patrice Baa-Puyoulet, Chloé S. Berger, Chun-Che Chang, Hsu Chao, Mei-Ju M. Chen, Yen-Ta Chen, Christopher P. Childers, Ariel D. Chipman, Andrew G. Cridge, Antonin J. J. Crumière, Peter K. Dearden, Elise M. Didion, Subba Reddy Palli, Jayendra Nath Shukla

Entomology Faculty Publications

Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.

Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but …


Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu Apr 2018

Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu

Electronic Thesis and Dissertation Repository

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription factor (TF) and determine its sequence specificity. Multiple algorithms were developed to derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the accurate modelling of binding behavior of dimeric TFs.

This thesis presents a novel …


Mechanism Of Transcription Anti-Termination In Human Mitochondria., Hauke S Hillen, Andrey V Parshin, Karen Agaronyan, Yaroslav I Morozov, James J Graber, Aleksandar Chernev, Kathrin Schwinghammer, Henning Urlaub, Michael Anikin, Patrick Cramer, Dmitry Temiakov Nov 2017

Mechanism Of Transcription Anti-Termination In Human Mitochondria., Hauke S Hillen, Andrey V Parshin, Karen Agaronyan, Yaroslav I Morozov, James J Graber, Aleksandar Chernev, Kathrin Schwinghammer, Henning Urlaub, Michael Anikin, Patrick Cramer, Dmitry Temiakov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. …


Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau Nov 2017

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. …


Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes Nov 2017

Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS: We use standard computational and mathematical methods, and develop novel methods as described in Results.

RESULTS: We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive …


Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould Sep 2017

Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould

Natural Sciences and Mathematics | Faculty Scholarship

Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements. We used CRISPR/Cas9 to delete the orthologous region in zebrafish in order to test the pathogenicity of …


A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf Jun 2017

A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Changes in the distribution of nucleosomes along the genome influence chromatin structure and impact gene expression by modulating the accessibility of DNA to transcriptional machinery. However, the role of genome-wide nucleosome positioning in gene expression and in maintaining differentiated cell states remains poorly understood. Drosophila melanogastercell lines represent distinct tissue types and exhibit cell-type specific gene expression profiles. They thus could provide a useful tool for investigating cell-type specific nucleosome organization of an organism’s genome. To evaluate this possibility, we compared genome-wide nucleosome positioning and occupancy in five different Drosophila tissue-specific cell lines, and in reconstituted chromatin, and then …


Discovery And Validation Of Information Theory-Based Transcription Factor And Cofactor Binding Site Motifs., Ruipeng Lu, Eliseos J Mucaki, Peter K Rogan Mar 2017

Discovery And Validation Of Information Theory-Based Transcription Factor And Cofactor Binding Site Motifs., Ruipeng Lu, Eliseos J Mucaki, Peter K Rogan

Biochemistry Publications

Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, …


De Novo Deciphering Three-Dimensional Chromatin Interaction And Topological Domains By Wavelet Transformation Of Epigenetic Profiles., Yong Chen, Yunfei Wang, Zhenyu Xuan, Min Chen, Michael Q Zhang Jun 2016

De Novo Deciphering Three-Dimensional Chromatin Interaction And Topological Domains By Wavelet Transformation Of Epigenetic Profiles., Yong Chen, Yunfei Wang, Zhenyu Xuan, Min Chen, Michael Q Zhang

Faculty Scholarship for the College of Science & Mathematics

Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by …


Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter Dec 2015

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter

Natalie G. Farny

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Zhx2 Enhances The Cytotoxicity Of Chemotherapeutic Drugs In Liver Tumor Cells By Repressing Mdr1 Via Interfering With Nf-Ya, Hongxin Ma, Xuetian Yue, Lifen Gao, Xiaohong Liang, Wenjiang Yan, Zhenyu Zhang, Haixia Shan, Hualin Zhang, Brett T. Spear, Chunhong Ma Jan 2015

Zhx2 Enhances The Cytotoxicity Of Chemotherapeutic Drugs In Liver Tumor Cells By Repressing Mdr1 Via Interfering With Nf-Ya, Hongxin Ma, Xuetian Yue, Lifen Gao, Xiaohong Liang, Wenjiang Yan, Zhenyu Zhang, Haixia Shan, Hualin Zhang, Brett T. Spear, Chunhong Ma

Microbiology, Immunology, and Molecular Genetics Faculty Publications

We previously reported the tumor suppressor function of Zinc-fingers and homeoboxes 2 (ZHX2) in hepatocellular carcinoma (HCC). Other studies indicate the association of increased ZHX2 expression with improved response to high dose chemotherapy in multiple myeloma. Here, we aim to test whether increased ZHX2 levels in HCC cells repress multidrug resistance 1(MDR1) expression resulting in increased sensitivity to chemotherapeutic drugs. We showed evidence that increased ZHX2 levels correlated with reduced MDR1 expression and enhanced the cytotoxicity of CDDP and ADM in different HCC cell lines. Consistently, elevated ZHX2 significantly reduced ADM efflux in HepG2 cells and greatly increased the CDDP-mediated …


The Role Of Batf2 In Lps/Ifnγ Polarized Macrophages, Marie A. Gehman Jan 2015

The Role Of Batf2 In Lps/Ifnγ Polarized Macrophages, Marie A. Gehman

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Transcription factors regulate distinct macrophage functions by regulating gene expression in response to micro-environmental cues. This functional plasticity is critical for regulating innate and adaptive immune responses during infection and during chronic disease processes including inflammatory diseases and cancer. Microarray analysis of macrophages polarized to a pro-inflammatory (M1) phenotype with LPS and IFNγ revealed that basic leucine zipper transcription factor ATF-like 2 (Batf2), a member of the AP1 transcription factors, is selectively upregulated in M1 macrophages compared to anti-inflammatory IL-4-polarized (M2) macrophages. The initial hypothesis was that Batf2 is a master regulator of gene expression that orchestrates M1 polarization. To …


Detection And Quantification Of Methylation In Dna Using Solid-State Nanopores., Jiwook Shim, Gwendolyn I Humphreys, Bala Murali Venkatesan, Jan Marie Munz, Xueqing Zou, Chaitanya Sathe, Klaus Schulten, Farhad Kosari, Ann M Nardulli, George Vasmatzis, Rashid Bashir Mar 2013

Detection And Quantification Of Methylation In Dna Using Solid-State Nanopores., Jiwook Shim, Gwendolyn I Humphreys, Bala Murali Venkatesan, Jan Marie Munz, Xueqing Zou, Chaitanya Sathe, Klaus Schulten, Farhad Kosari, Ann M Nardulli, George Vasmatzis, Rashid Bashir

Faculty Scholarship for the College of Science & Mathematics

Epigenetic modifications in eukaryotic genomes occur primarily in the form of 5-methylcytosine (5 mC). These modifications are heavily involved in transcriptional repression, gene regulation, development and the progression of diseases including cancer. We report a new single-molecule assay for the detection of DNA methylation using solid-state nanopores. Methylation is detected by selectively labeling methylation sites with MBD1 (MBD-1x) proteins, the complex inducing a 3 fold increase in ionic blockage current relative to unmethylated DNA. Furthermore, the discrimination of methylated and unmethylated DNA is demonstrated in the presence of only a single bound protein, thereby giving a resolution of a single …


Comparative Developmental Transcriptomics Of Echinoderms, Roy Vaughn Jan 2012

Comparative Developmental Transcriptomics Of Echinoderms, Roy Vaughn

USF Tampa Graduate Theses and Dissertations

The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage …


Secondary Metabolic Gene Cluster Silencing In Aspergillus Nidulans, J. W. Bok, D. Noordermeer, Shubha Kale Ireland, N. P. Keller Sep 2006

Secondary Metabolic Gene Cluster Silencing In Aspergillus Nidulans, J. W. Bok, D. Noordermeer, Shubha Kale Ireland, N. P. Keller

Faculty and Staff Publications

In contrast to most primary metabolism genes, the genes involved in secondary metabolism and certain nutrient utilization pathways are clustered in fungi. Recently a nuclear protein, LaeA, was found to be required for the transcription of several secondary metabolite gene clusters in Aspergillus nidulans. Here we show that LaeA regulation does not extend to nutrient utilization or the spoC1 sporulation clusters. One of the secondary metabolite clusters regulated by LaeA contains the positive regulatory (i.e. aflR) and biosynthetic genes required for biosynthesis of sterigmatocystin (ST), a carcinogenic toxin. Analysis of ST gene cluster expression indicates LaeA regulation of the cluster …


C-Jun N-Terminal Kinase (Jnk) Is Required For Survival And Proliferation Of B-Lymphoma Cells, Murali Gururajan, Roger Chui, Anbu K. Karuppannan, Jiyuan Ke, C. Darrell Jennings, Subbarao Bondada Aug 2005

C-Jun N-Terminal Kinase (Jnk) Is Required For Survival And Proliferation Of B-Lymphoma Cells, Murali Gururajan, Roger Chui, Anbu K. Karuppannan, Jiyuan Ke, C. Darrell Jennings, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Several primary murine and human B lymphomas and cell lines were found to constitutively express high levels of the activated form of c-jun N-terminal kinase (JNK), a member of the mitogen-activated protein (MAP) kinase family. Proliferation of murine B lymphomas CH31, CH12.Lx, BKS-2, and WEHI-231 and the human B lymphomas BJAB, RAMOS, RAJI, OCI-Ly7, and OCI-Ly10 was strongly inhibited by SP600125, an anthrapyrazolone inhibitor of JNK, in a dose-dependent manner. The lymphoma cells underwent apoptosis and arrested at the G2/M phase of cell cycle. Furthermore, JNK-specific small interfering RNA (siRNA) inhibited the growth of both murine and human B lymphomas. …


Drawing Lines In The Sand: Even Skipped Et Al. And Parasegment Boundaries., James B. Jaynes, Miki Fujioka May 2004

Drawing Lines In The Sand: Even Skipped Et Al. And Parasegment Boundaries., James B. Jaynes, Miki Fujioka

Department of Biochemistry and Molecular Biology Faculty Papers

The pair-rule segmentation gene even skipped (eve) is required to activate engrailed stripes and to organize odd-numbered parasegments (PSs). The protein product Eve has been shown to be an active repressor of transcription, and recent models for Eve function suggest that activation of engrailed is indirect, but these models have not been fully tested. Here we identify the forkhead domain transcription factor Sloppy-paired as the key intermediate in the initial activation of engrailed by Eve in odd-numbered parasegments. We also analyze the roles of the transcription factors Runt and Odd-skipped in this process. Detailed analysis of engrailed and pair-rule gene …


The Lin-41 Rbcc Gene Acts In The C. Elegans Heterochronic Pathway Between The Let-7 Regulatory Rna And The Lin-29 Transcription Factor, Frank Slack, Michael Basson, Zhongchi Liu, Victor Ambros, H. Horvitz, Gary Ruvkun Mar 2000

The Lin-41 Rbcc Gene Acts In The C. Elegans Heterochronic Pathway Between The Let-7 Regulatory Rna And The Lin-29 Transcription Factor, Frank Slack, Michael Basson, Zhongchi Liu, Victor Ambros, H. Horvitz, Gary Ruvkun

Victor R. Ambros

Null mutations in the C. elegans heterochronic gene lin-41 cause precocious expression of adult fates at larval stages. Increased lin-41 activity causes the opposite phenotype, reiteration of larval fates. let-7 mutations cause similar reiterated heterochronic phenotypes that are suppressed by lin-41 mutations, showing that lin-41 is negatively regulated by let-7. lin-41 negatively regulates the timing of LIN-29 adult specification transcription factor expression. lin-41 encodes an RBCC protein, and two elements in the lin-413'UTR are complementary to the 21 nucleotide let-7 regulatory RNA. A lin-41::GFP fusion gene is downregulated in the tissues affected by lin-41 at the time that the let-7 …


Drosophila Unpaired Encodes A Secreted Protein That Activates The Jak Signaling Pathway, Douglas A. Harrison, Patricia E. Mccoon, Richard Binari, Michael Gilman, Norbert Perrimon Oct 1998

Drosophila Unpaired Encodes A Secreted Protein That Activates The Jak Signaling Pathway, Douglas A. Harrison, Patricia E. Mccoon, Richard Binari, Michael Gilman, Norbert Perrimon

Biology Faculty Publications

In vertebrates, many cytokines and growth factors have been identified as activators of the JAK/STAT signaling pathway. In Drosophila, JAK and STAT molecules have been isolated, but no ligands or receptors capable of activating the pathway have been described. We have characterized the unpaired (upd) gene, which displays the same distinctive embryonic mutant defects as mutations in the Drosophila JAK (hopscotch) and STAT (stat92E) genes. Upd is a secreted protein, associated with the extracellular matrix, that activates the JAK pathway. We propose that Upd is a ligand that relies on JAK signaling to stimulate transcription of pair-rule genes in a …


Role Of Egr-1 Gene Expression In B Cell Receptor-Induced Apoptosis In An Immature B Cell Lymphoma, Subramanian Muthukkumar, Seong-Su Han, Sumathi Muthukkumar, Vivek M. Rangnekar, Subbarao Bondada Oct 1997

Role Of Egr-1 Gene Expression In B Cell Receptor-Induced Apoptosis In An Immature B Cell Lymphoma, Subramanian Muthukkumar, Seong-Su Han, Sumathi Muthukkumar, Vivek M. Rangnekar, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Ligation of B cell receptor (BCR) on BKS-2, an immature B cell lymphoma by anti-IgM antibodies (Ab) caused apoptosis. Here we report that signaling through B cell receptor in wild type BKS-2 cells down-regulated the expression of Egr-1, a zinc finger-containing transcription factor. A reduction in the level ofEgr-1 mRNA could be demonstrated as early as 30 min after the ligation of BCR on BKS-2 cells. Immunocytochemical and Western blot analysis revealed that the expression of EGR-1 protein was also inhibited by anti-IgM treatment. Antisense oligonucleotides to Egr-1 caused growth inhibition and apoptosis in BKS-2 cells, suggesting that …


The Heterochronic Gene Lin-29 Encodes A Zinc Finger Protein That Controls A Terminal Differentiation Event In Caenorhabditis Elegans, Ann Rougvie, Victor Ambros Jul 1995

The Heterochronic Gene Lin-29 Encodes A Zinc Finger Protein That Controls A Terminal Differentiation Event In Caenorhabditis Elegans, Ann Rougvie, Victor Ambros

Victor R. Ambros

A hierarchy of heterochronic genes, lin-4, lin-14, lin-28 and lin-29, temporally restricts terminal differentiation of Caenorhabditis elegans hypodermal seam cells to the final molt. This terminal differentiation event involves cell cycle exit, cell fusion and the differential regulation of genes expressed in the larval versus adult hypodermis. lin-29 is the most downstream gene in the developmental timing pathway and thus it is the most direct known regulator of these diverse processes. We show that lin-29 encodes a protein with five zinc fingers of the (Cys)2-(His)2 class and thus likely controls these processes by regulating transcription in a stage-specific manner. Consistent …