Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Employing High Probability Gene Choice Elements To Understand Singular Odorant Receptor Expression, Raena Mina Sep 2020

Employing High Probability Gene Choice Elements To Understand Singular Odorant Receptor Expression, Raena Mina

Dissertations, Theses, and Capstone Projects

The ability to detect odorous chemicals in the environment is the oldest of the senses necessary for survival, from escaping danger, finding mates, to locating food. It is said that humans can identify and discriminate up to a trillion different odor mixtures. For chemoreception to have such a high discriminatory power, would require a diverse population of cells dedicated for odor detection. These detector cells are the olfactory sensory neurons (OSNs), which express odorant receptors (ORs) that bind to chemical odors in the environment. In order to increase specificity and sensitivity, an essential property in olfaction is for each OSN …


Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori Jun 2020

Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori

Dissertations, Theses, and Capstone Projects

The diverse neuronal cell types in the vertebrate retina all originate from multipotent retinal progenitor cells (RPCs). These undergo a series of molecular changes driven by developmental gene regulatory networks (GRNs) as they divide to generate RPCs which are more restricted in their potential fates. It is crucial to understand these GRNs and changes to gene expression in order to understand how cell identity is established during retinal development. In particular, the GRN that promotes the development of cone photoreceptors and horizontal cells is not well-defined. This work focuses on two approaches to further elucidate the components of this regulatory …


Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury Feb 2020

Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury

Dissertations, Theses, and Capstone Projects

Brain ischemia is a major cause of debilitation and death in the United States. Excitotoxicity, a condition that arises from the accumulation of glutamate (Glu) in the synapse that leads to overactivation of Glu receptors (GluRs), is the major mechanism of neuronal damage in brain ischemia / stroke. Although it is commonly acknowledged that over activation of GluRs leads to neurodegeneration, it has been recently shown that even during excitotoxicity Glu has a concurrent important role in regulating neuroprotection. GluR-activated transcription factors seem to mediate this neuroprotection, but it remains unclear which signaling cascades and transcription factors are regulated by …


A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg Jan 2020

A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg

Publications and Research

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse …