Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Genetics and Genomics

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto Feb 2024

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) abuse remains a global health concern, with emerging evidence highlighting its genotoxic potential. In the central nervous system METH enters dopaminergic cells primarily through the dopamine transporter (DAT), which controls the dynamics of dopamine (DA) neurotransmission by driving the reuptake of extracellular DA into the presynaptic neuronal cell. Additional effects of METH on the storage of DA in synaptic vesicles lead to the dysregulated cytosolic accumulation of DA. Previous studies have shown that after METH disrupts intracellular vesicular stores of DA, the excess DA in the cytosol is rapidly oxidized. This generates an abundance of reactive oxygen species …


Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska May 2023

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska

Student Theses and Dissertations

Buildup of oxidative stress and mitochondrial dysfunction are well known characteristics of both sporadic and hereditary amyotrophic lateral sclerosis (ALS). While both forms of the disease seem to arise from common cellular dysfunction, the genetic disease is studied to a much greater extent. Engineering novel animal models of the sporadic form of the disease is crucial for development of druggable targets to treat ALS and understand the underlying mechanisms. Interestingly, accumulation of oxidative stress by exacerbated emission of reactive oxygen species (ROS) from presynaptic mitochondria is a hallmark of both hereditary and sporadic ALS. Previous work by our laboratory showed …


Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace Sep 2022

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is an age related neurodegenerative disease with pathology that includes amyloid plaques, neurofibrillary tangles and non-resolving neuroinflammation. Non-resolving neuroinflammation lasts the entire course of the disease and has deleterious effects and is often thought to accelerate AD pathology. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) have commonly been used as therapeutics to treat pain, inflammation and vascular. NSAIDs work by altering the cyclooxygenase (COX) mediated biosynthesis of prostaglandins which are lipid mediators that have many physiological functions, for example nociception, inflammation and vasodilation. Epidemiological studies support the notion that NSAIDs could be used to treat AD. Yet, clinical trials using …


Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan Feb 2022

Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan

Dissertations, Theses, and Capstone Projects

As the major excitatory neurotransmitter in the mammalian brain, Glutamate (Glu) is critical for normal neuronal physiology. Disruption in Glu clearance results in hyper-stimulation of glutamatergic circuits, potentially leading to excitotoxic neurodegeneration. The canonical model of brain connectivity describes glutamatergic synapses as well insulated and enveloped by glia. These glia express Glu Transporters (GluTs) which work to clear Glu following synaptic activity. However, critical areas of the brain such as the mammalian hippocampus display poor synaptic isolation, which may result in Glu spillover between adjacent synapses and subsequent loss of circuit specificity. How accurate signal transmission is achieved in these …


Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen Sep 2021

Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen

Dissertations, Theses, and Capstone Projects

In the vertebrate retina, cone photoreceptors are crucial for high acuity color vision. Several retinal diseases lead to loss of cones and there is a need to identify the normal developmental genesis of these cells to inform the development of stem cell-based therapies. Cone genesis has previously been shown to be repressed by Notch signaling, however, the mechanism by which Notch signaling controls cone fate determination is still unclear. It has been identified that cone photoreceptors are formed from multipotent retinal progenitor cells (RPCs) that first generate genetically-defined, restricted RPCs with limited mitotic and fate potential to preferentially form cones …


The Role Of Placental Genes On Intellectual Disability And Developmental Delay, Maedot A. Yidenk Jun 2021

The Role Of Placental Genes On Intellectual Disability And Developmental Delay, Maedot A. Yidenk

Dissertations, Theses, and Capstone Projects

The complex interaction between gene expressions and environmental factors plays a key role in the pathogenesis of various diseases, including neurodevelopmental disorders (Lenroot & Giedd, 2008). This study aimed to evaluate first, the magnitude of association between placental gene Methyl-CpG Binding Protein 2 (MeCP2) and intellectual disability (ID) in the offspring and second, the synergy between placental gene Forkhead box protein 1(FOXP1) and developmental delay (DD) in the offspring. We focused on assessing two specific paradigms, i) placental gene expressions of MeCP2 among children that have ID vs. children without ID; and ii) placental gene expression of …


Employing High Probability Gene Choice Elements To Understand Singular Odorant Receptor Expression, Raena Mina Sep 2020

Employing High Probability Gene Choice Elements To Understand Singular Odorant Receptor Expression, Raena Mina

Dissertations, Theses, and Capstone Projects

The ability to detect odorous chemicals in the environment is the oldest of the senses necessary for survival, from escaping danger, finding mates, to locating food. It is said that humans can identify and discriminate up to a trillion different odor mixtures. For chemoreception to have such a high discriminatory power, would require a diverse population of cells dedicated for odor detection. These detector cells are the olfactory sensory neurons (OSNs), which express odorant receptors (ORs) that bind to chemical odors in the environment. In order to increase specificity and sensitivity, an essential property in olfaction is for each OSN …


Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori Jun 2020

Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori

Dissertations, Theses, and Capstone Projects

The diverse neuronal cell types in the vertebrate retina all originate from multipotent retinal progenitor cells (RPCs). These undergo a series of molecular changes driven by developmental gene regulatory networks (GRNs) as they divide to generate RPCs which are more restricted in their potential fates. It is crucial to understand these GRNs and changes to gene expression in order to understand how cell identity is established during retinal development. In particular, the GRN that promotes the development of cone photoreceptors and horizontal cells is not well-defined. This work focuses on two approaches to further elucidate the components of this regulatory …


Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury Feb 2020

Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury

Dissertations, Theses, and Capstone Projects

Brain ischemia is a major cause of debilitation and death in the United States. Excitotoxicity, a condition that arises from the accumulation of glutamate (Glu) in the synapse that leads to overactivation of Glu receptors (GluRs), is the major mechanism of neuronal damage in brain ischemia / stroke. Although it is commonly acknowledged that over activation of GluRs leads to neurodegeneration, it has been recently shown that even during excitotoxicity Glu has a concurrent important role in regulating neuroprotection. GluR-activated transcription factors seem to mediate this neuroprotection, but it remains unclear which signaling cascades and transcription factors are regulated by …


A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg Jan 2020

A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg

Publications and Research

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse …


A Novel Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Synapse Development, Hao Wu May 2019

A Novel Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Synapse Development, Hao Wu

Dissertations, Theses, and Capstone Projects

Cytoskeleton based active transport with motor proteins is essential for mRNA localization and local protein translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased screen for interaction between mRNA binding proteins (RBP) and motor proteins, we identified protein interacting with APP tail 1 (PAT1) as a potential direct adapter between the β-actin mRNA Zipcode-binding protein 1 (ZBP1) and Kinesin-1 motor complex.

Mouse PAT1 is similar to the Kinesin Light Chain (KLC) in amino acid sequence and binds directly to KLC. High-resolution images from structured illumination microscopy (SIM) indicates that synaptic stimulation …


Underlying Contribution Of Executive Functioning To Cognition And Academic Achievement In Individuals With Dystrophinopathy, Robert Fee Sep 2018

Underlying Contribution Of Executive Functioning To Cognition And Academic Achievement In Individuals With Dystrophinopathy, Robert Fee

Dissertations, Theses, and Capstone Projects

Dystrophinopathy is a genetic disorder that results in the lack of or abnormal expression of the protein dystrophin. It is a disorder that alters cell structure and function, impacts the developing brain and brain function, presents with multi-domain cognitive deficits, and influences both mood and behavior. Cognitive impairments appear to be more localized to specific areas of functioning rather than a global deficit; however, deficits have been identified across multiple cognitive domains including language and aspects of executive functioning. A careful examination of the cognitive phenotype and its association to mutations affecting CNS isoforms is necessary to clarify the neuropsychological …


Special Muscles, Annamaria C. Scaccia Dec 2015

Special Muscles, Annamaria C. Scaccia

Capstones

Special Muscles is a documentary that explores living with Duchenne muscular dystrophy, a fatal degenerative disease that weakens the muscles at an aggressive rate. The film will give an uncensored look at how one family copes with inevitability of the disease and their journey chasing a promising experimental cure.

Special Muscles follows 7-year-old Pietro Scarso and his family as they face the challenges, complications and promise of treating Pietro’s progressive muscle disorder. The film travels from New York to Los Angeles to Philadelphia to document the Scarso family’s race against time as Pietro undergoes a 96-week clinical trial for Eteplirsen, …


Long-Term Cre-Mediated Retrograde Tagging Of Neurons Using A Novel Recombinant Pseudorabies Virus, Hysell V. Oviedo, Hassasna K. Oyibo, Petr Znamenskiy, Lynn W. Enquist, Anthony M. Zador Sep 2014

Long-Term Cre-Mediated Retrograde Tagging Of Neurons Using A Novel Recombinant Pseudorabies Virus, Hysell V. Oviedo, Hassasna K. Oyibo, Petr Znamenskiy, Lynn W. Enquist, Anthony M. Zador

Publications and Research

Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, …


Dynamic Gene Expression In The Human Cerebral Cortex Distinguishes Children From Adults, Kirstin N. Sterner, Amy Weckle, Harry T. Chugani, Adi L. Tarca, Chet C. Sherwood, Patrick R. Hof, Christopher W. Kuzawa, Amy M. Boddy, Asad Abbas, Ryan L. Raaum, Lucie Grégoire, Leonard Lipovich, Lawrence I. Grossman, Monica Uddin, Morris Goodman, Derek E. Wildman May 2012

Dynamic Gene Expression In The Human Cerebral Cortex Distinguishes Children From Adults, Kirstin N. Sterner, Amy Weckle, Harry T. Chugani, Adi L. Tarca, Chet C. Sherwood, Patrick R. Hof, Christopher W. Kuzawa, Amy M. Boddy, Asad Abbas, Ryan L. Raaum, Lucie Grégoire, Leonard Lipovich, Lawrence I. Grossman, Monica Uddin, Morris Goodman, Derek E. Wildman

Publications and Research

In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR>0). Moreover, genes known to …


Pten Regulation Of Local And Long-Range Connections In Mouse Auditory Cortex, Qiaojie Xiong, Hysell V. Oviedo, Lloyd C. Trotman, Anthony M. Zador Feb 2012

Pten Regulation Of Local And Long-Range Connections In Mouse Auditory Cortex, Qiaojie Xiong, Hysell V. Oviedo, Lloyd C. Trotman, Anthony M. Zador

Publications and Research

Autism spectrum disorders (ASDs) are highly heritable developmental disorders caused by a heterogeneous collection of genetic lesions. Here we use a mouse model to study the effect on cortical connectivity of disrupting the ASD candidate gene PTEN (phosphatase and tensin homolog deleted on chromosome 10). Through Cre-mediated recombination, we conditionally knocked out PTEN expression in a subset of auditory cortical neurons. Analysis of long-range connectivity using channelrhodopsin-2 revealed that the strength of synaptic inputs from both the contralateral auditory cortex and from the thalamus onto PTEN-cko neurons was enhanced compared with nearby neurons with normal PTEN expression. Laser-scanning photostimulation showed …


Strokes Of Existence: The Connection Of All Things, Mari Gorman Jan 2007

Strokes Of Existence: The Connection Of All Things, Mari Gorman

Graduate Student Publications and Research

Acted or real—and all life is real whether one is acting or not—the common denominator and consistent, ubiquitous reality of life and all behavior is that it manifests in the form of relationships on all scales. But what is a relationship? Until now, the answer to this question has not been sufficiently known. As a result of many years of empirical research that began with the aim of discovering what is going on in a gifted actor when s/he is playing a character that can be observed and experienced as a living, intuitive being, and based on the knowledge that …