Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cancer Biology

Plasma Induced Reactive Oxygen Species-Dependent Cytotoxicity In Glioblastoma 3d Tumourspheres, Janith Wanigasekara, Carlos Barcia, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin Jan 2022

Plasma Induced Reactive Oxygen Species-Dependent Cytotoxicity In Glioblastoma 3d Tumourspheres, Janith Wanigasekara, Carlos Barcia, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin

Articles

The aim of this study was to determine the effects of a pin‐to‐plate cold atmospheric plasma (CAP) on U‐251 MG three‐dimensional (3D) glioblastoma spheroids under different conditions. 3D tumorspheres showed higher resistance to the CAP treatment compared to 2D monolayer cells. A single CAP treatment was able to induce cytotoxicity, while multiple CAP treatments augmented this effect. CAP was also able to induce cytotoxicity throughout the tumoursphere, and we identified that reactive oxygen species(ROS) plays a major role, while H2O2plays a partial role in CAP‐induced cytotoxicity in tumour-spheres. We conclude that ROS‐dependent cytotoxicity is induced uniformly throughout glioblastoma and epidermoid …


The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya Jan 2022

The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya

Theses and Dissertations

Glioblastoma Multiforme has been shown to be one of the deadliest primary brain cancers. One of the reasons why GBM is so deadly, is a unique immunosuppressive tumor microenvironment that promotes GBM growth and progression. Both astrocyte and microglia have been implicated in immunosuppression. In this study, we explored the role of Interferon Regulatory Factor 1 (IRF-1) in astrocytes and glioma cells on the growth of spontaneous glioma tumors. IRF-1 is regulated by the JAK/STAT pathway and induces expression of Programmed death ligand 1 (PD-L1). PD-L1 downregulates immune responses to glioma. We found that IRF-1 had no effect on spontaneous …


Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin Mar 2020

Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

The elucidation of better treatments for solid tumors and especially malignant glial tumors is a priority. Better understanding of the molecular underpinnings of treatment response and resistance are critical determinants in the success for this endeavor. Recently, a battery of novel tools have surfaced that allow to interrogate tumor cell metabolism to more precise extent than this was possible in the earlier days. At the forefront of these developments are the extracellular flux and carbon tracing analyses. Through utilization of these techniques our group made the recent observation that acute and chronic c-MET inhibition drives fatty acid oxidation that in …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Release Of Hmgb1 In Response To Pro-Apoptotic Glioma Killing Strategies: Efficacy And Neurotoxicity, Marianela Candolfi, Kader Yagiz, David Foulad, Gabrielle Alzadeh, Matthew Tesarfreund, Akm Ghulam Muhammad, Mariana Puntel, Kurt Kroeger, Chunyan Liu, Sharon Lee, James Curtin, Gwendalyn D. King, Jonathan Lerner, Katsuaki Sato, Yohei Mineharu, Weidong Xiong, Pedro R. Lowenstein, Maria Castro Jul 2010

Release Of Hmgb1 In Response To Pro-Apoptotic Glioma Killing Strategies: Efficacy And Neurotoxicity, Marianela Candolfi, Kader Yagiz, David Foulad, Gabrielle Alzadeh, Matthew Tesarfreund, Akm Ghulam Muhammad, Mariana Puntel, Kurt Kroeger, Chunyan Liu, Sharon Lee, James Curtin, Gwendalyn D. King, Jonathan Lerner, Katsuaki Sato, Yohei Mineharu, Weidong Xiong, Pedro R. Lowenstein, Maria Castro

Articles

Purpose In preparation for a Phase I clinical trial utilizing a combined cytotoxic/immunotherapeutic strategy using adenoviruses expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor killing agent in relation to efficacy and safety when compared to other pro-apoptotic approaches. Experimental Design and Results The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the pro-apoptotic cytokines (TNF-α, TRAIL, FasL), alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. In rats bearing large GBMs (day 9), the …


Role Of Transient Receptor Potential Canonical-6 (Trpc6) Channel In Metastasis Of Glioblastoma Multiforme, Rajarajeshwari Venkataraman Jan 2008

Role Of Transient Receptor Potential Canonical-6 (Trpc6) Channel In Metastasis Of Glioblastoma Multiforme, Rajarajeshwari Venkataraman

Electronic Theses and Dissertations

Glioblastoma multiforme (GBM) is one of the extremely fatal brain tumors. The main reason that makes it so lethal is its capability to invade and spread to other parts of CNS producing secondary tumors. Among other factors hypoxia, reduced oxygen availability, is linked to higher metastatic potential of cancers. Hypoxia causes numerous changes in genome and proteome of the cell. These changes help a normal cell to adapt to nutritional deficiency, but the same changes can increase the malignancy and metastasis in tumor cells. Extensive research by a number of curious scientists reveal that various pathways involving numerous proteins cross-talk …