Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology Faculty Research

Interleukin‑17

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Cancer Biology

Potential Anticancer Effect Of Prostratin Through Sik3 Inhibition, Dalal Alotaibi, Suneetha Amara, Terrance L. Johnson, Venkataswarup Tiriveedhi Dec 2017

Potential Anticancer Effect Of Prostratin Through Sik3 Inhibition, Dalal Alotaibi, Suneetha Amara, Terrance L. Johnson, Venkataswarup Tiriveedhi

Biology Faculty Research

Prostratin, a phorbol ester natural plant compound, has been demonstrated to exert an anti‑retroviral effect through activation of latent cluster of differentiation (CD)4+T lymphocytes and inhibition of viral entry into the cell through downregulation of chemokine receptor type 4 (CXCR4) expression. However, the potential effect of prostratin on cancer is yet to be defined. As CXCR4 is well known to induce cancer migration, it was hypothesized that prostratin induces an anti‑cancer effect through inhibition of CXCR4 expression. The authors previously demonstrated that high stimulating conditions (sub‑minimal IL‑17, 0.1 ng/ml, synergized with high salt, Δ0.05 M NaCl) promote breast cancer cell …


Nfat5/Stat3 Interaction Mediates Synergism Of High Salt With Il-17 Towards Induction Of Vegf-A Expression In Breast Cancer Cells, Suneetha Amara, Dalal Alotaibi, Venkataswarup Tiriveedhi Jun 2016

Nfat5/Stat3 Interaction Mediates Synergism Of High Salt With Il-17 Towards Induction Of Vegf-A Expression In Breast Cancer Cells, Suneetha Amara, Dalal Alotaibi, Venkataswarup Tiriveedhi

Biology Faculty Research

Chronic inflammation has been considered an important player in cancer proliferation and progression. High salt (sodium chloride) levels have been considered a potent inducer of chronic inflammation. In the present study, the synergistic role of high salt with interleukin (IL)‑17 towards induction of the inflammatory and angiogenic stress factor vascular endothelial growth factor (VEGF)‑A was investigated. Stimulation of MCF-7 breast cancer cells with high salt (0.2 M NaCl) and sub‑minimal IL‑17 (1 ng/ml) enhanced the expression of VEGF-A (2.9 and 2.6-fold, respectively, P<0.05) compared with untreated cells. Furthermore, co‑treatment with both high salt and sub‑minimal IL‑17 led to a 5.9‑fold increase in VEGF‑A expression (P<0.01), thus suggesting a synergistic role of these factors. VEGF‑A promoter analysis and specific small interfering RNA knock‑down of transcription factors revealed that high salt induced VEGF‑A expression through nuclear factor of activated T‑cells (NFAT)5, while IL‑17 induced VEGF‑A expression via signal transducer and activator of transcription (STAT)3 signaling mechanisms. Treatment of normal human aortic endothelial cells with the supernatant of activated MCF‑7 cells enhanced cell migration and induced expression of migration‑specific factors, including vascular cell adhesion protein, β1 integrin and cluster of differentiation 31. These data suggest that high salt levels synergize with pro‑inflammatory IL‑17 to potentially induce cancer progression and metastasis through VEGF‑A expression. Therefore, low‑salt diet, anti‑NFAT5 and anti‑STAT3 therapies may provide novel avenues for enhanced efficiency of the current cancer therapy.