Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology Faculty Research

Cancer

Articles 1 - 2 of 2

Full-Text Articles in Cancer Biology

Perplexing Role Of P-Glycoprotein In Tumor Microenvironment, Kianna Robinson, Venkataswarup Tiriveedhi Mar 2020

Perplexing Role Of P-Glycoprotein In Tumor Microenvironment, Kianna Robinson, Venkataswarup Tiriveedhi

Biology Faculty Research

Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, …


Sodium Channel Γenac Mediates Il-17 Synergized High Salt Induced Inflammatory Stress In Breast Cancer Cells, Suneetha Amara, Michael T. Ivy, Elbert L. Myles, Venkataswarup Tiriveedhi Mar 2016

Sodium Channel Γenac Mediates Il-17 Synergized High Salt Induced Inflammatory Stress In Breast Cancer Cells, Suneetha Amara, Michael T. Ivy, Elbert L. Myles, Venkataswarup Tiriveedhi

Biology Faculty Research

Chronic inflammation is known to play a critical role in the development of cancer. Recent evidence suggests that high salt in the tissue microenvironment induces chronic inflammatory milieu. In this report, using three breast cancer-related cell lines, we determined the molecular basis of the potential synergistic inflammatory effect of sodium chloride (NaCl) with interleukin-17 (IL-17). Combined treatment of high NaCl (0.15M) with sub-effective IL-17 (0.1nM) induced enhanced growth in breast cancer cells along with activation of reactive nitrogen and oxygen (RNS/ROS) species known to promote cancer. Similar effect was not observed with equi-molar mannitol. This enhanced of ROS/RNS activity correlates …