Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cancer Biology

Novel Role For The Golgi Membrane Protein Tmem165 In Control Of Migration And Invasion For Breast Carcinoma, Pavitra Murali, Blake P. Johnson, Zhongpeng Lu, Leslie Climer, Danielle A. Scott, Francois Foulquier, Gabriela Oprea-Ilies, Vladimir Lupashin, Richard R. Drake, Karen L. Abbott Jul 2020

Novel Role For The Golgi Membrane Protein Tmem165 In Control Of Migration And Invasion For Breast Carcinoma, Pavitra Murali, Blake P. Johnson, Zhongpeng Lu, Leslie Climer, Danielle A. Scott, Francois Foulquier, Gabriela Oprea-Ilies, Vladimir Lupashin, Richard R. Drake, Karen L. Abbott

Articles

The TMEM165 gene encodes for a multiple pass membrane protein localized in the Golgi that has been linked to congenital disorders of glycosylation. The TMEM165 protein is a putative ion transporter that regulates H+/Ca++/Mn++ homeostasis and pH in the Golgi. Previously, we identified TMEM165 as a potential biomarker for breast carcinoma in a glycoproteomic study using late stage invasive ductal carcinoma tissues with patient-matched adjacent normal tissues. The TMEM165 protein was not detected in non-malignant matched breast tissues and was detected in invasive ductal breast carcinoma tissues by mass spectrometry. Our hypothesis is that the TMEM165 protein confers a growth …


Glioma-Derived Exosomes Drive The Differentiation Of Neural Stem Cells To Astrocytes, Krishna D. Sharma, Danielle Schaal, Rajshekhar A. Kore, Rabab N. Hamzah, Sahitya Chetan Pandanaboina, Abdallah Hayar, Robert J. Griffin, Malathi Srivatsan, Nathan S. Reyna, Jennifer Yanhua Xie Jul 2020

Glioma-Derived Exosomes Drive The Differentiation Of Neural Stem Cells To Astrocytes, Krishna D. Sharma, Danielle Schaal, Rajshekhar A. Kore, Rabab N. Hamzah, Sahitya Chetan Pandanaboina, Abdallah Hayar, Robert J. Griffin, Malathi Srivatsan, Nathan S. Reyna, Jennifer Yanhua Xie

Articles

Exosomes appear to be effective inter-cellular communicators delivering several types of molecules, such as proteins and RNAs, suggesting that they could influence neural stem cell (NSC) differentiation. Our RNA sequencing studies demonstrated that the RNAs related to cell proliferation and astrocyte differentiation were upregulated in human mesenchymal stem cells (hMSC) when co-cultured with exosomes obtained from the culture medium of human glioma cells (U87). Metallothionein 3 and elastin genes, which are related to cell proliferation, increased 10 and 7.2 fold, respectively. Expression of genes for astrocyte differentiation, such as tumor growth factor alpha, induced protein 3 of the NOTCH1 family, …