Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cancer Biology

Utilizing Mass Spectrometry Imaging To Correlate N-Glycosylation Of Hepatocellular Carcinoma With Tumor Subtypes For Biomarker Discovery, Andrew Delacourt Apr 2023

Utilizing Mass Spectrometry Imaging To Correlate N-Glycosylation Of Hepatocellular Carcinoma With Tumor Subtypes For Biomarker Discovery, Andrew Delacourt

MUSC Theses and Dissertations

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths globally and is a growing clinical problem with poor survival outcomes beyond early-stage disease. Surveillance for HCC has primarily relied on ultrasound and serum α-fetoprotein (AFP), but combined they only have a sensitivity of 63% for early-stage HCC tumors, suggesting a need for improved diagnostic strategies. Alterations to N-glycan expression are relevant to the progression of cancer, and there a multitude of N-glycan-based cancer biomarkers that have been identified with sensitivity for various cancer types including HCC. Spatial HCC tissue profiling of N-linked glycosylation by matrix-assisted laser desorption ionization imaging …


Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey Jan 2023

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey

CMC Senior Theses

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a clinically effective and safe treatment, there is little understanding of the radiobiological relationship between absorbed dose and tissue response, and thus there is no dosimetric standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the time pattern of delivery. BED is a virtual dose that can …