Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cancer Biology

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie Jul 2015

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie

Zijian Xie

Cells contain a large pool of non-pumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. Supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness …


Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie Jul 2015

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie

Joseph I Shapiro MD

Cells contain a large pool of non-pumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. Supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness …


Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie Jul 2011

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie

Biochemistry and Microbiology

Cells contain a large pool of non-pumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. Supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness …


Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle Oct 2009

Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle

Dartmouth Scholarship

Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.