Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cancer Biology

Erbeta Regulation Of Nf-Kb Activation In Prostate Cancer Is Mediated By Hif-1, Paul Mak, Jiarong Li, Sanjoy Samanta, Arthur M. Mercurio Dec 2015

Erbeta Regulation Of Nf-Kb Activation In Prostate Cancer Is Mediated By Hif-1, Paul Mak, Jiarong Li, Sanjoy Samanta, Arthur M. Mercurio

Arthur M. Mercurio

We examined the regulation of NF-kappaB in prostate cancer by estrogen receptor beta (ERbeta) based on the inverse correlation between p65 and ERbeta expression that exists in prostate carcinomas and reports that ERbeta can inhibit NF-kappaB activation, although the mechanism is not known. We demonstrate that ERbeta functions as a gate-keeper for NF-kappaB p65 signaling by repressing its expression and nuclear translocation. ERbeta regulation of NF-kappaB signaling is mediated by HIF-1. Loss of ERbeta or hypoxia stabilizes HIF-1alpha, which we found to be a direct driver of IKKbeta transcription through a hypoxia response element present in the promoter of the …


Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie Jul 2015

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie

Zijian Xie

Cells contain a large pool of non-pumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. Supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness …


Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie Jul 2015

Na/K-Atpase Mimetic Pnaktide Peptide Inhibits The Growth Of Human Cancer Cells, Zhichuan Li, Zhongbing Zhang, Joe X. Xie, Xin Li, Jiang Tian, Ting Cai, Hongaun Cui, Hanfei Ding, Joseph I. Shapiro Md, Zijian Xie

Joseph I Shapiro MD

Cells contain a large pool of non-pumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. Supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness …