Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell death

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 34

Full-Text Articles in Cell and Developmental Biology

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Immunepotent Crp Enhances Cyclophosphamide-Induced Cytotoxicity Through A Caspase Independent But Ros Dependent Mechanism In Triple Negative-Breast Cancer Cells, Ana L. Rivera, A. C. Martínez-Torres, C. Rodríguez-Padilla Sep 2023

Immunepotent Crp Enhances Cyclophosphamide-Induced Cytotoxicity Through A Caspase Independent But Ros Dependent Mechanism In Triple Negative-Breast Cancer Cells, Ana L. Rivera, A. C. Martínez-Torres, C. Rodríguez-Padilla

Research Symposium

Background: Breast cancer (BC) is one of the leading causes of cancer death worldwide. Cyclophosphamide (CYP) remains a mainstay in cancer therapy mainly in the triple negative breast cancer subtype (TNBC) in spite of harmful adverse effects and cell death-resistances. To face this, combination of chemotherapies and immunotherapies has been proposed. IMMUNEPOTENT CRP (ICRP) is an immunotherapy that has cytotoxic effects in several cancer cells without affecting peripheral blood mononuclear cells (PBMC) and CD3+ cells, beside improving clinical parameters of chemotherapy-treated patients. The aim of this study was to evaluate the mechanism of cytotoxicity induced by ICRP in combination with …


Transcriptional Pausing Factor M1bp Regulates Cellular Homeostasis By Suppressing Autophagy And Apoptosis In Drosophila Eye, Anuradha Venkatakrishnan Chimata, Hannah Darnell, Akanksha Raj, Madhuri Kango-Singh Sep 2023

Transcriptional Pausing Factor M1bp Regulates Cellular Homeostasis By Suppressing Autophagy And Apoptosis In Drosophila Eye, Anuradha Venkatakrishnan Chimata, Hannah Darnell, Akanksha Raj, Madhuri Kango-Singh

Biology Faculty Publications

During organogenesis cellular homeostasis plays a crucial role in patterning and growth. The role of promoter proximal pausing of RNA polymerase II, which regulates transcription of several developmental genes by GAGA factor or Motif 1 Binding Protein (M1BP), has not been fully understood in cellular homeostasis. Earlier, we reported that M1BP, a functional homolog of ZKSCAN3, regulates wingless (wg) and caspase-dependent cell death (apoptosis) in the Drosophila eye. Further, blocking apoptosis does not fully rescue the M1BPRNAi phenotype of reduced eye. Therefore, we looked for other possible mechanism(s). In a forward genetic screen, members of the Jun-amino-terminal-(NH2)-Kinase (JNK) pathway …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


Co-Targeting Plk1 And Dnmt3a In Advanced Prostate Cancer, Zhuangzhuang Zhang, Lijun Cheng, Qiongsi Zhang, Yifan Kong, Daheng He, Kunyu Li, Matthew Rea, Jianlin Wang, Ruixin Wang, Jinghui Liu, Zhiguo Li, Chongli Yuan, Enze Liu, Yvonne N. Fondufe-Mittendorf, Lang Li, Tao Han, Chi Wang, Xiaoqi Liu May 2021

Co-Targeting Plk1 And Dnmt3a In Advanced Prostate Cancer, Zhuangzhuang Zhang, Lijun Cheng, Qiongsi Zhang, Yifan Kong, Daheng He, Kunyu Li, Matthew Rea, Jianlin Wang, Ruixin Wang, Jinghui Liu, Zhiguo Li, Chongli Yuan, Enze Liu, Yvonne N. Fondufe-Mittendorf, Lang Li, Tao Han, Chi Wang, Xiaoqi Liu

Toxicology and Cancer Biology Faculty Publications

Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 …


From Cell Death To Regeneration: Rebuilding After Injury, Kelly Tseng, Dylan Guerin, Cindy Kha Mar 2021

From Cell Death To Regeneration: Rebuilding After Injury, Kelly Tseng, Dylan Guerin, Cindy Kha

Life Sciences Faculty Research

The ability to regrow lost or damaged tissues is widespread, but highly variable among animals. Understanding this variation remains a challenge in regeneration biology. Numerous studies from Hydra to mouse have shown that apoptosis acts as a potent and necessary mechanism in regeneration. Much is known about the involvement of apoptosis during normal development in regulating the number and type of cells in the body. In the context of regeneration, apoptosis also regulates cell number and proliferation in tissue remodeling. Apoptosis acts both early in the process to stimulate regeneration and later to regulate regenerative patterning. Multiple studies indicate that …


Tunel Apoptotic Cell Detection In Stony Coral Tissue Loss Disease (Sctld): Evaluation Of Potential And Improvements, E. Murphy Mcdonald Dec 2020

Tunel Apoptotic Cell Detection In Stony Coral Tissue Loss Disease (Sctld): Evaluation Of Potential And Improvements, E. Murphy Mcdonald

All HCAS Student Capstones, Theses, and Dissertations

Stony coral tissue loss disease (SCTLD) is a highly lethal coral disease that has caused a dramatic loss of coral tissue along the Florida Reef Tract and throughout the Wider Caribbean. This study seeks to understand whether programmed cell death (apoptosis) is involved in the pathology of the highly virulent SCTLD tissue loss lesion. Tissues from diseased colonies of Pseudodiploria strigosa collected in 2018 and 2020 were stained using the terminal deoxyribonucleotidyltransferase (TdT) mediated dUTP-biotin nick end labeling (TUNEL) assay to visualize areas of programmed cell death. The archived tissue samples collected in 2018 exhibited a significantly higher degree of …


Proteasome-Mediated Regulation Of Cdhr1a By Siah1 Modulates Photoreceptor Development And Survival In Zebrafish, Warlen P. Piedade, Kayla F. Titialii-Torres, Ann C. Morris, Jakub K. Famulski Nov 2020

Proteasome-Mediated Regulation Of Cdhr1a By Siah1 Modulates Photoreceptor Development And Survival In Zebrafish, Warlen P. Piedade, Kayla F. Titialii-Torres, Ann C. Morris, Jakub K. Famulski

Biology Faculty Publications

Congenital retinal dystrophies are a major cause of unpreventable and incurable blindness worldwide. Mutations in CDHR1, a retina specific cadherin, are associated with cone-rod dystrophy. The ubiquitin proteasome system (UPS) is responsible for mediating orderly and precise targeting of protein degradation to maintain biological homeostasis and coordinate proper development, including retinal development. Recently, our lab uncovered that the seven in absentia (Siah) family of E3 ubiquitin ligases play a role in optic fissure fusion and identified Cdhr1a as a potential target of Siah. Using two-color whole mount in situ hybridization and immunohistochemistry, we detected siah1 and cdhr1a co-expression as well …


Phosphorylation Of Cyclophilin D At Serine 191 Regulates Mitochondrial Permeability Transition Pore Opening And Cell Death After Ischemia-Reperfusion, Stephen Hurst, Fabrice Gonnot, Maya Dia, Claire Crola Da Silva, Ludovic Gomez, Shey-Shing Sheu Aug 2020

Phosphorylation Of Cyclophilin D At Serine 191 Regulates Mitochondrial Permeability Transition Pore Opening And Cell Death After Ischemia-Reperfusion, Stephen Hurst, Fabrice Gonnot, Maya Dia, Claire Crola Da Silva, Ludovic Gomez, Shey-Shing Sheu

Department of Medicine Faculty Papers

The mitochondrial permeability transition pore (mPTP) plays a critical role in the pathogenesis of cardiovascular diseases, including ischemia/reperfusion injury. Although the pore structure is still unresolved, the mechanism through which cyclophilin D (CypD) regulates mPTP opening is the subject of intensive studies. While post-translational modifications of CypD have been shown to modulate pore opening, specific phosphorylation sites of CypD have not yet been identified. We hypothesized here that phosphorylation of CypD on a serine residue controls mPTP opening and subsequent cell death at reperfusion. We combined in silico analysis with in vitro and genetic manipulations to determine potential CypD phosphorylation …


Inactivation Of Hippo And Cjun-N-Terminal Kinase (Jnk) Signaling Mitigate Fus Mediated Neurodegeneration In-Vivo, Ankita Sarkar, Abijeet Singh Mehta, Prajakta Deshpande, Madhuri Kango-Singh, Udai Bhan Pandey, Amit Singh Jul 2020

Inactivation Of Hippo And Cjun-N-Terminal Kinase (Jnk) Signaling Mitigate Fus Mediated Neurodegeneration In-Vivo, Ankita Sarkar, Abijeet Singh Mehta, Prajakta Deshpande, Madhuri Kango-Singh, Udai Bhan Pandey, Amit Singh

Biology Faculty Publications

Amyotrophic Lateral Sclerosis (ALS), a late-onset neurodegenerative disorder characterized by the loss of motor neurons in the central nervous system, has no known cure to-date. Disease causing mutations in human Fused in Sarcoma (FUS) leads to aggressive and juvenile onset of ALS. FUS is a well-conserved protein across different species, which plays a crucial role in regulating different aspects of RNA metabolism. Targeted misexpression of FUS in Drosophila model recapitulates several interesting phenotypes relevant to ALS including cytoplasmic mislocalization, defects at the neuromuscular junction and motor dysfunction. We screened for the genetic modifiers of human FUS-mediated neurodegenerative phenotype using molecularly …


Higher Sensitivity Of Female Cells To Ethanol: Methylation Of Dna Lowers Cyp2e1, Generating More Ros, Carlos G. Penaloza, Mayra Cruz, Gabrielle Germain, Sidra Jabeen, Mohammad Javdan, R. A. Lockshin, Zahra Zakeri Jan 2020

Higher Sensitivity Of Female Cells To Ethanol: Methylation Of Dna Lowers Cyp2e1, Generating More Ros, Carlos G. Penaloza, Mayra Cruz, Gabrielle Germain, Sidra Jabeen, Mohammad Javdan, R. A. Lockshin, Zahra Zakeri

Publications and Research

Background: Cells taken from mouse embryos before sex differentiation respond to insults according to their chromosomal sex, a difference traceable to differential methylation. We evaluated the mechanism for this difference in the controlled situation of their response to ethanol.

Methods: We evaluated the expression of mRNA for alcohol dehydrogenase (ADH), aldehyde dehyrogenases (ALDH), and a cytochrome P450 isoenzyme (Cyp2e1) in male and female mice, comparing the expressions to toxicity under several experimental conditions evaluating redox and other states.

Results: Females are more sensitive to ethanol. Disulfiram, which inhibits alcohol dehydrogenase (ADH), increases cell death in males, eliminating the sex …


Ultrafine Carbon Nanoparticles Activate Inflammasome Signaling And Cell Death In Murine Macrophages, Alexander Soloniuk, Hadley Lamascus, Jay Brewster, John Mann Mar 2019

Ultrafine Carbon Nanoparticles Activate Inflammasome Signaling And Cell Death In Murine Macrophages, Alexander Soloniuk, Hadley Lamascus, Jay Brewster, John Mann

Seaver College Research And Scholarly Achievement Symposium

Carbon black (CB) is the primary nanoparticulate component of air pollution from fossil fuel combustion. This work examines the cellular impact of ultrafine carbon (carbon black, CB) nanoparticles, that range in size down to 30 nm, upon murine macrophages. The size analysis of the carbon black nanoparticles was performed using atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. RAW246.7 macrophage cells were exposed to CB doses ranging from 50 – 200 ug/ml in complete media. Analysis of cell survival over time revealed elevated rates of significant nuclear degradation and cell lifting after 48 hours of exposure, and in …


Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik Sep 2018

Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (Saccharomyces cerevisiae). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of grx5Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an in vitro iron/ascorbate …


Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo Sep 2018

Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo

Dissertations, Theses, and Capstone Projects

Apolipoprotein L-1 (APOL1) is a secreted protein that provides protection against several protozoan parasites due to its channel forming properties. Recently evolved variants, G1 and G2, increase kidney disease risk when present in two copies. In mammalian cells, overexpression of G1 and G2, but not wild-type G0, leads to swelling and eventual lysis. However, the mechanism of cell death remains elusive with multiple pathways being invoked, such as autophagic cell death mediated by a BH3 domain in APOL1, which we evaluated in this study. We hypothesized that the common trigger for these pathways is the APOL1 cation channel, which is …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo Jan 2018

Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo

Bioelectrics Publications

Nanopulse Stimulation (NPS) eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD). With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs). The activation of DCs by dead/dying cells leads to increases …


Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich Dec 2017

Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells take cues from their environment and interpret them to enact a response. External stresses can produce a decision between adjusting to behaviors which promote surviving the stress, or enacting a cell death program. The decision to undergo programmed cell death (PCD) is controlled by a complex interaction between nuclear and mitochondrial signals. The mitochondria are highly dynamic organelles that constantly undergo fission and fusion. However, a dramatic shift in mitochondrial morphology toward fission occurs early in the PCD process. We have identified the transcription factor cyclin C as the biochemical trigger for stress‐induced mitochondrial hyper‐fragmentation in yeast (Cooper …


The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper Dec 2017

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to stress, the yeast1 and mammalian2 cyclin C translocate from the nucleus to the cytoplasm, where it associates with the GTPase Drp1/Dnm1 to drive mitochondrial fragmentation and apoptosis. Therefore, the decision to release cyclin C represents a key life or death decision. In unstressed cells, the cyclin C‐Cdk8 kinase regulates transcription by associating with the Mediator of RNA polymerase II. We previously reported that the Mediator component Med13 anchors cyclin C in the nucleus3. Loss of Med13 function leads to constitutive cytoplasmic localization of cyclin C, resulting in fragmented mitochondria, hypersensitivity to stress and …


Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper Dec 2017

Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

All eukaryotic cells, when faced with unfavorable environmental conditions, have to decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In S. cerevisiae, oxidative stress triggers Med13 destruction1, which thereafter releases cyclin Ci nto the cytoplasm. Cytoplasmic cyclin C associates with mitochondria where it induces hyper-fragmentation and programmed cell death2. This suggests a model in …


Modification Of The Ribosome As Part Of The Adaptive Response To Oxidative Stress In Yeast, Jessica A Zinskie, Daniel Shedlovskiy, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik Dec 2017

Modification Of The Ribosome As Part Of The Adaptive Response To Oxidative Stress In Yeast, Jessica A Zinskie, Daniel Shedlovskiy, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Living organisms are constantly exposed to a variety of environmental and internal stressors tha tare detrimental to their cellular physiology and viability. One such condition, oxidativestress, is caused by abnormal amounts of Reactive Oxygen Species (ROS) that can lead to damage to proteins, nucleic acids, and lipids. Although the mechanisms to neutralize ROS have been widely studied, the understanding of ROS‐mediated signaling for these mechanisms is rather incomplete and sparse. We have uncovered a previously undescribed phenomenon of yeast ribosomes to respond to elevated levels of ROS through a specific endonucleolytic cleavage of the 25S rRNA in the c‐loop of …


Identifying The Signaling Mechanisms Of Egfr-Mediated Apoptosis., Nicole Marion Jackson May 2017

Identifying The Signaling Mechanisms Of Egfr-Mediated Apoptosis., Nicole Marion Jackson

Electronic Theses and Dissertations

The Epidermal Growth Factor Receptor (EGFR) is a 170-kilodalton transmembrane protein that belongs to the ErbB family of receptor tyrosine kinases. Upon ligand-mediated activation, the EGFR is responsible for cell growth, proliferation, and tissue homeostasis; however, the EGFR is overexpressed in many human malignancies, including MDA-MB-468 cells, a metastatic breast epithelial cell line. Studies within this cell line, and other cell lines characterized with high EGFR levels, have shown that EGF stimulation results in the induction of apoptosis. However, the mechanisms and signaling effectors implicated in this process have yet to be elucidated. The overarching research goal of this dissertation …


Salvianolic Acid B For Pulmonary Delivery Towards Reversal Of Emphysema, Sneha Dhapare Jan 2017

Salvianolic Acid B For Pulmonary Delivery Towards Reversal Of Emphysema, Sneha Dhapare

Theses and Dissertations

A new pathobiologic hypothesis has recently emerged that the alveolar structural destruction and loss in emphysema are caused by the deficiency of vascular endothelial growth factor (VEGF). Therefore, this project hypothesized that such pathobiologic VEGF deficiency of emphysematous lungs can be recovered with a natural caffeic acid tetramer, salvianolic acid B (SalB), through activation of signal transducer and activator of transcription 3 (STAT3), so that emphysema can be reversed as a result of inhibition of induced cell death, stimulation of cell proliferation and migration, and promotion of stem cell recruitment to the lungs.

SalB was first shown to be potently …


The Apoptotic And Inhibitory Effects Of Phylloquinone In The U937 Cell Line, Tesha E. Blair May 2016

The Apoptotic And Inhibitory Effects Of Phylloquinone In The U937 Cell Line, Tesha E. Blair

Electronic Theses and Dissertations

Phylloquinone is a natural analog of vitamin K that has been shown to both inhibit cancer cell growth and induce apoptosis in several cancer cell lines. This study examined these effects in a non-Hodgkin lymphoma cell line, known as U937. Cell growth inhibition and apoptosis were assessed through the quantification of cell density and area, following treatment with several concentrations of phylloquinone. In addition, apoptosis was detected and quantified using immunofluorescent markers of apoptosis (i.e. annexin V, APO-BrdU). Treatment with phylloquinone resulted in reduced overall cell density, increased overall cell area, and an increased frequency of apoptosis in U937 cells. …


Dose-Dependent Atp Depletion And Cancer Cell Death Following Calcium Electroporation, Relative Effect Of Calcium Concentration And Electric Field Strength, Emilie Louise Hansen, Esin Bengisu Sozer, Stefania Romeo, Stine Krog Frandsen, P. Thomas Vernier, Julie Gehl Jan 2015

Dose-Dependent Atp Depletion And Cancer Cell Death Following Calcium Electroporation, Relative Effect Of Calcium Concentration And Electric Field Strength, Emilie Louise Hansen, Esin Bengisu Sozer, Stefania Romeo, Stine Krog Frandsen, P. Thomas Vernier, Julie Gehl

Bioelectrics Publications

Background: Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. Methods: In three human cell lines — H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, …


Characterization Of The Anti-Apoptotic Function Of The Lysine Demethylase Plant Homeodomain Finger Protein 8 (Phf8), Kimberly Muranko Jun 2014

Characterization Of The Anti-Apoptotic Function Of The Lysine Demethylase Plant Homeodomain Finger Protein 8 (Phf8), Kimberly Muranko

Electronic Thesis and Dissertation Repository

Apoptosis is an essential process in development and tissue maintenance. The tumor suppressor protein p53 initiates apoptosis through transactivation of pro-apoptotic genes when cellular stress is detected. This study identifies a regulatory role for the lysine demethylase, PHF8, in the p53-mediated apoptosis pathway. We initially suspected PHF8 of demethylating the adaptor protein Numb, however found this to be untrue. PHF8 has been found to have oncogenic properties including an anti-apoptotic effect, however how PHF8 negatively affects apoptosis has not been previously investigated. We found PHF8 inhibits translation of the pro-apoptotic genes TP53, BAX and CASP3. Chromatin immunoprecipitation revealed …


Calpain 5: A Non-Classical Calpain Highly Expressed In The Cns And Localized To Mitochondria And Nuclear Pml Bodies, Ranjana Singh Jan 2014

Calpain 5: A Non-Classical Calpain Highly Expressed In The Cns And Localized To Mitochondria And Nuclear Pml Bodies, Ranjana Singh

Theses and Dissertations--Neuroscience

Calpain 5 (CAPN5) is a non-classical member of the calpain family. It lacks the EF-hand motif characteristic of the classical calpains, calpain 1 and 2, but retains catalytic and Ca2+ binding non EF domains. Tra-3, an ortholog of CAPN5, is involved in necrotic cell death in C.elegans; although specific role of CAPN5 has not been investigated in the mammalian CNS. I compared relative mRNA levels of calpains in rat CNS, which revealed that CAPN5 is the second most highly expressed calpain. We examined relative levels of CAPN5 from late embryonic day 18 to postnatal day 90 and …


Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Dartmouth Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using …


Two Modes Of Cell Death Caused By Exposure To Nanosecond Pulsed Electric Field, Olga N. Pakhomova, Betsy W. Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2013

Two Modes Of Cell Death Caused By Exposure To Nanosecond Pulsed Electric Field, Olga N. Pakhomova, Betsy W. Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (‘‘nanoelectroporation’’), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of …


Induction Of Cell Death Mechanisms And Apoptosis By Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe, Nova M. Sain, Wei Ren Jan 2013

Induction Of Cell Death Mechanisms And Apoptosis By Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe, Nova M. Sain, Wei Ren

Bioelectrics Publications

Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, these studies show that nsPEF-induced dissipation of DeltaPsim closely parallels deterioration in cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, cell death depended of the presence of Ca2+. When both events occur, cell …


Transient Features In Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria And Viability, Stephen J. Beebe, Yeong-Jer Chen, Nova M. Sain, Karl H. Schoenbach, Shu Xiao Jan 2012

Transient Features In Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria And Viability, Stephen J. Beebe, Yeong-Jer Chen, Nova M. Sain, Karl H. Schoenbach, Shu Xiao

Bioelectrics Publications

It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only …