Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Aging

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 44

Full-Text Articles in Cell and Developmental Biology

Oligodendrocyte 2phatal Reveals Dynamics Of Myelin Degeneration And Repair, Timothy W. Chapman Sep 2023

Oligodendrocyte 2phatal Reveals Dynamics Of Myelin Degeneration And Repair, Timothy W. Chapman

Dartmouth College Ph.D Dissertations

Oligodendrocytes are responsible for producing myelin in the central nervous system. This lipid-rich coating along axons helps to increase action potential velocity, provide metabolic support to axons, and facilitate fine-tuning of neuronal circuitry. Demyelination and/or myelin dysfunction is widespread in neurodegenerative diseases and aging. Despite this, we know very little about how individual oligodendrocytes, or the myelin sheaths they produce, degenerate. Myelin repair, carried out by resident oligodendrocyte precursor cells (OPCs), is known to occur following myelin damage in certain contexts. We sought to investigate the cellular dynamics of oligodendrocyte degeneration and repair by developing a non-inflammatory demyelination model, combining …


Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett Jul 2022

Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett

USF Tampa Graduate Theses and Dissertations

The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in C. elegans. We performed an RNA interference screen of lysine acetyltransferases and examined mRNA expression of the heat-shock inducible gene …


The Effects Of Aging On Wound Healing And Limb Regeneration In The Axolotl, Hande Sahin May 2022

The Effects Of Aging On Wound Healing And Limb Regeneration In The Axolotl, Hande Sahin

Graduate Masters Theses

The Mexican axolotl is capable of regenerating various parts of its body and maintains this capacity throughout its entire life. Although this ability is sustained through adulthood, multiple regenerative processes appear to be negatively affected by aging. Here, we focus on evaluating the effect of aging on the rate of wound healing and limb regeneration. We have developed new in vivo, and ex vivo assays to characterize wound healing and identify differences between young and aged animals during this process. We have also characterized morphological features of mature skin from both groups of animals and although there are no obvious …


An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson Jan 2022

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson

Graduate Theses, Dissertations, and Problem Reports

Aging is an inevitable process that occurs as humans grow older. It is characterized by the chronological accumulation of cellular damage over time leading to functional decline as an organism grows older. Several processes are thought to contribute to the aging phenomenon, but one of the most prolific of these is the disruption of protein homeostasis (proteostasis). The collapse of proteostasis can lead to accelerated aging and the development of age-related diseases including devastating neurodegenerative diseases (NDs) like Alzheimer and Parkinson disease. Virtually all NDs are characterized by the buildup of proteins in and around neurons resulting in neuronal death …


Dna Damage And Aging In Progeria Compared To Healthy Cells., Ashtyn Marie Hill May 2021

Dna Damage And Aging In Progeria Compared To Healthy Cells., Ashtyn Marie Hill

Chancellor’s Honors Program Projects

No abstract provided.


Microrna-Based Biomarkers In Alzheimer’S Disease (Ad), Yuhai Zhao, Vivian Jaber, Peter N. Alexandrov, Andrea Vergallo, Simone Lista, Harald Hampel, Walter J. Lukiw Oct 2020

Microrna-Based Biomarkers In Alzheimer’S Disease (Ad), Yuhai Zhao, Vivian Jaber, Peter N. Alexandrov, Andrea Vergallo, Simone Lista, Harald Hampel, Walter J. Lukiw

School of Medicine Faculty Publications

Alzheimer’s disease (AD) is a multifactorial, age-related neurological disease characterized by complex pathophysiological dynamics taking place at multiple biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain networks. These alterations account for multiple pathophysiological mechanisms such as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral decline. Alterations in microRNA (miRNA) signaling have been implicated in the epigenetics and molecular genetics of all neurobiological processes associated with AD pathophysiology. These changes encompass altered miRNA abundance, speciation and complexity in anatomical regions of the CNS targeted by the disease, including modified miRNA expression …


Aging, Gait Variability, And Adaptability, Collin Douglas Bowersock Aug 2020

Aging, Gait Variability, And Adaptability, Collin Douglas Bowersock

Health Services Research Dissertations

The purpose of this work was to study the relationships between age, measures of gait variability, and locomotor adaptability. Measures of gait variability are used to identify maladapted locomotor behavior, motor disease, and risk of falls. The first aim was to determine the relationships between age and measures of gait variability. Thirty-four participants (23-71 years old) walked on a treadmill for 6 minutes at their preferred speed. Variability of stride times and lengths was computed via linear measures (standard deviation and coefficient of variation) and nonlinear measures (sample entropy and detrended fluctuation analysis). Movement trajectory variability of the dominant knee …


Multi-Generational Effects Of ∆9-Tetrahydrocannabinol Exposure On Gene Expression In Liver Tissue, Kayla Lovitt May 2020

Multi-Generational Effects Of ∆9-Tetrahydrocannabinol Exposure On Gene Expression In Liver Tissue, Kayla Lovitt

Honors Theses

Cannabis is the most commonly used, cultivated, and trafficked illicit drug worldwide. Increased availability and acceptance of cannabis and cannabinoid-containing products provide the necessity for understanding how these substances influence aging. In this study, zebrafish (Danio rerio) were exposed to concentrations of Δ9-tetrahydrocannabinol (THC) (0.08, 0.4, 2 µM) during embryonic-larval development, the effects on aging were measured 30 months later and in the offspring of the exposed fish (F1 generation. We observed results indicating a biphasic and hormetic effect. Treatment with the lowest concentration of THC significantly increased egg production, while higher concentrations resulted in impaired …


Regulation Of Endoplasmic Reticulum Stress In Saccharomyces Cerevisiae, Sarah R. Chadwick Apr 2020

Regulation Of Endoplasmic Reticulum Stress In Saccharomyces Cerevisiae, Sarah R. Chadwick

Electronic Thesis and Dissertation Repository

The budding yeast Saccharomyces cerevisiae has been used extensively to uncover the genetic mechanisms that control basic cellular processes, including survival, maintenance, and response to stressors. One metric of yeast survival is chronological lifespan (CLS), which is the amount of time non-dividing yeast cells can survive at stationary phase. Variations in CLS following genetic alteration are used to understand the function of specific genes and pathways in cellular aging. Many factors contribute to aging, including accumulation of toxic misfolded secretory proteins in the endoplasmic reticulum (ER stress), to which the cell responds through activation of ER stress signaling pathways, such …


Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson Sep 2019

Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double-blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body …


Transgenerational Effects Of Maternal Age On Offspring Fitness In Crickets, Jacob D. Wilson Jan 2019

Transgenerational Effects Of Maternal Age On Offspring Fitness In Crickets, Jacob D. Wilson

Electronic Theses and Dissertations

Advanced parental age is an important aspect of parental condition that can have both positive and negative effects on offspring fitness, and thus, parental age can be considered a parental effect. As a parental effect, parental age may affect a variety of offspring traits and may cascade to influence several generations of offspring. Given the complexities of studying both paternal and maternal age, we studied the effects of maternal age only. Using the Pacific field cricket, Teleogryllus oceanicus, we asked 1) does maternal age have influences over several generations of offspring and 2) does maternal age influence the reproductive …


Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling, Hanna Leins, Medhanie Mulaw, Karina Eiwen, Vadim Sakk, Ying Liang, Michael Denkinger, Hartmut Geiger, Reinhold Schirmbeck Aug 2018

Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling, Hanna Leins, Medhanie Mulaw, Karina Eiwen, Vadim Sakk, Ying Liang, Michael Denkinger, Hartmut Geiger, Reinhold Schirmbeck

Toxicology and Cancer Biology Faculty Publications

Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems …


Overexpression Of Cyb5r3 And Nqo1, Two Nad+-Producing Enzymes, Mimics Aspects Of Caloric Restriction, Alberto Diaz-Ruiz, Michael Lanasa, Joseph Garcia, Hector Mora, Frances Fan, Alejandro Martin-Montalvo, Andrea Di Francesco, Miguel Calvo-Rubio, Andrea Salvador-Pascual, Miguel A. Aon, Kenneth W. Fishbein, Kevin J. Pearson, Jose Manuel Villalba, Placido Navas, Michel Bernier, Rafael De Cabo Aug 2018

Overexpression Of Cyb5r3 And Nqo1, Two Nad+-Producing Enzymes, Mimics Aspects Of Caloric Restriction, Alberto Diaz-Ruiz, Michael Lanasa, Joseph Garcia, Hector Mora, Frances Fan, Alejandro Martin-Montalvo, Andrea Di Francesco, Miguel Calvo-Rubio, Andrea Salvador-Pascual, Miguel A. Aon, Kenneth W. Fishbein, Kevin J. Pearson, Jose Manuel Villalba, Placido Navas, Michel Bernier, Rafael De Cabo

Pharmacology and Nutritional Sciences Faculty Publications

Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH‐dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age‐associated diseases. However, …


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

Dissertations & Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual …


Human Body Composition And Immunity: Visceral Adipose Tissue Produces Il-15 And Muscle Strength Inversely Correlates With Nk Cell Function In Elderly Humans, Ahmad Al-Attar, Steven R. Presnell, Jody L. Clasey, Douglas E. Long, R. Grace Walton, Morgan Sexton, Marlene E. Starr, Philip A. Kern, Charlotte A. Peterson, Charles T. Lutz Mar 2018

Human Body Composition And Immunity: Visceral Adipose Tissue Produces Il-15 And Muscle Strength Inversely Correlates With Nk Cell Function In Elderly Humans, Ahmad Al-Attar, Steven R. Presnell, Jody L. Clasey, Douglas E. Long, R. Grace Walton, Morgan Sexton, Marlene E. Starr, Philip A. Kern, Charlotte A. Peterson, Charles T. Lutz

Pathology and Laboratory Medicine Faculty Publications

Natural killer (NK) lymphocyte-mediated cytotoxicity and cytokine secretion control infections and cancers, but these crucial activities decline with age. NK cell development, homeostasis, and function require IL-15 and its chaperone, IL-15 receptor alpha (IL-15Rα). Macrophages and dendritic cells (DC) are major sources of these proteins. We had previously postulated that additional IL-15 and IL-15Rα is made by skeletal muscle and adipose tissue. These sources may be important in aging, when IL-15-producing immune cells decline. NK cells circulate through adipose tissue, where they may be exposed to local IL-15. The objectives of this work were to determine (1) if human muscle, …


Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield Jan 2018

Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly …


The Effect Of Stress Induced Premature Senescence On The Expression Of Heterogeneous Ribonucleoieoprotein, Yuriy Pechenyy Jan 2018

The Effect Of Stress Induced Premature Senescence On The Expression Of Heterogeneous Ribonucleoieoprotein, Yuriy Pechenyy

Dissertations and Theses

The role of heterogeneous nuclear ribonucleoproteins (hnRNP) in cellular senescence is yet to be defined. Cellular senescence is a terminal growth arrest in somatic cells. It is thought to be the consequence of telomeric shortening that acts as a DNA damage signal. Conversely, cells induced into premature senescence (SIPS) by oxidative stress, is independent of telomere attrition. Premature senescence has been proposed to be physiologically relevant as it can be induced by treatment with chemotherapeutic agents. In particular, we are studying the roles of hnRNP A1 and A2 in the maintenance of the senescence phenotype. hnRNPs are a family of …


Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill Jan 2018

Dysregulation Of Daf-16/Foxo3a-Mediated Stress Responses Accelerates T Oxidative Dna Damage Induced Aging, Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill

Faculty & Staff Scholarship

DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms …


Subcutaneous Neurotophin 4 Infusion Using Osmotic Pumps Or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles, Richard D. Andreatta, Joseph C. Stemple, Tanya S. Seward, Colleen A. Mcmullen Jun 2017

Subcutaneous Neurotophin 4 Infusion Using Osmotic Pumps Or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles, Richard D. Andreatta, Joseph C. Stemple, Tanya S. Seward, Colleen A. Mcmullen

Physical Therapy Faculty Publications

Laryngeal dysfunction in the elderly is a major cause of disability, from voice disorders to dysphagia and loss of airway protective reflexes. Few, if any, therapies exist that target age-related laryngeal muscle dysfunction. Neurotrophins are involved in muscle innervation and differentiation of neuromuscular junctions (NMJs). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. The neuromuscular junctions (NMJs) become smaller and less abundant in aging rat laryngeal muscles, with evidence of functional denervation. We explored the effects of NTF4 for future clinical use as a therapeutic to improve function in aging human laryngeal muscles. Here, we provide …


Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers Mar 2017

Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers

USF Tampa Graduate Theses and Dissertations

The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a …


Reproductive Competency And Mitochondrial Variation In Aged Syrian Hamster Oocytes, Fang Li, Frank J. Castora, Wentia Ford, Khalid Alarid, Howard W. Jones Jr., R. James Swanson Jan 2017

Reproductive Competency And Mitochondrial Variation In Aged Syrian Hamster Oocytes, Fang Li, Frank J. Castora, Wentia Ford, Khalid Alarid, Howard W. Jones Jr., R. James Swanson

Biological Sciences Faculty Publications

The hamster is a useful model of human reproductive biology because its oocytes are similar to those in humans in terms of size and structural stability. In the present study we evaluated fecundity rate, ovarian follicular numbers, ova production, mitochondrial number, structure and function, and cytoplasmic lamellae (CL) in young (2–4 months) and old (12–18 months) Syrian hamsters (Mesocricetus auratus). Young hamsters had higher fertilisation rates and larger litters than old hamsters (100 vs 50% and 9.3 +/- 0.6 vs 5.5 +/- 0.6, respectively). Ovarian tissue from superovulated animals showed a 46% decrease in preantral follicles in old …


Vacht Overexpression Increases Acetylcholine At The Synaptic Cleft And Accelerates Aging Of Neuromuscular Junctions, Satoshi Sugita, Leland L. Fleming, Caleb Wood, Sydney K. Vaughan, Matheus P. S. M. Gomes, Wallace Camargo, Ligia A. Naves, Vania F. Prado, Marco A. M. Prado, Cristina Guatimosim, Gregorio Valdez Oct 2016

Vacht Overexpression Increases Acetylcholine At The Synaptic Cleft And Accelerates Aging Of Neuromuscular Junctions, Satoshi Sugita, Leland L. Fleming, Caleb Wood, Sydney K. Vaughan, Matheus P. S. M. Gomes, Wallace Camargo, Ligia A. Naves, Vania F. Prado, Marco A. M. Prado, Cristina Guatimosim, Gregorio Valdez

Anatomy and Cell Biology Publications

Background: Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age-and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). Methods: Chat-ChR2-EYFP (VAChTHyp) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1G93A), and Chat-IRES-Cre and tdTomato transgenic mice were used in this …


Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez Nov 2015

Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez

Genomics and Precision Medicine Faculty Publications

The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated …


Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds May 2015

Efficient In Vitro Development Of Photoreceptors From Human Pluripotent Stem Cells, Joseph C. Reynolds

Dissertations, Masters Theses, Capstones, and Culminating Projects

Degeneration of the rod and cone photoreceptors in the human retina is among the most common causes of blindness. Replacing these damaged photoreceptors may help to restore vision. Repairing the damaged retina relies on the insertion of new, healthy cells. Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are two possible sources of photoreceptors to restore vision. Previous data shows that human ES cells and iPS cells can be differentiated into photoreceptors and transplanted into the eye to restore some vision. However, this process is inefficient, and costly. Here, we show a new method for inducing photoreceptor production …


High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes Jan 2015

High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes

USF Tampa Graduate Theses and Dissertations

This project was developed to identify novel methods for high-throughput culturing and screening of C. elegans to investigate age-related metabolic changes and to survey the proteomic and metabolomic factors associated with age-related changes. To accomplish these goals we developed a novel way to grow C. elegans in liquid culture in 96-well microplates for several weeks without suffering significant fluid loss due to evaporation and without needing to shake or unseal the plates for aeration. We also developed methods for assaying the total volume of live C. elegans in microplate cultures using a fluorescence microplate reader and for performing RNAi experiments …


The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards Jan 2015

The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards

USF Tampa Graduate Theses and Dissertations

Understanding how metabolites contribute to anaplerosis, antioxidant effects, and hormetic pathways during aging is fundamental to creating supplements and dietary habits that may decrease age-associated disease and decline, thus improving the quality of life in old age. In order to uncover metabolic pathways that delay aging, the effects of large sets of metabolites associated with mitochondrial function on lifespan were investigated.

Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in C. elegans. Addition of fumarate and succinate also extended lifespan and all three metabolites activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced …


Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe Sep 2014

Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe

Mary M. Lee

We have isolated a candidate Mullerian inhibiting substance (MIS) type II receptor complementary DNA from an embryonic rat urogenital ridge library and have studied its binding to MIS, its developmental pattern of expression and tissue distribution. By in situ hybridization with a full-length riboprobe, the receptor is expressed in the mesenchymal cells surrounding the Mullerian duct at embryonic days 14, 15, and 16 and in tubular and follicular structures of the rat fetal gonads. Expression of the messenger RNA was also seen in the granules cells and seminiferous tubules of pubertal gonads. Northern analysis revealed that the MIS type II …


Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck Sep 2014

Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck

Mary M. Lee

Mullerian inhibiting substance (MIS) is a 140-kilodalton homodimeric glycoprotein that causes regression of the Mullerian ducts in male embryos, and may also have a role in both males and females in the regulation of germ cell maturation. We examined the ontogeny of MIS messenger RNA (mRNA) in rat testes from midgestation through adulthood and found two discrete MIS mRNA species that are developmentally regulated. The larger 2.0-kilobase species is abundant at embryonic day 14, then decreases in late gestation, and is barely detectable after birth. The smaller 1.8-kilobase species is first noted at embryonic day 18 and is the major …


Predictors Of Serum Dioxin, Furan, And Pcb Concentrations Among Women From Chapaevsk, Russia, Olivier Humblet, Paige Williams, Susan Korrick, Oleg Sergeyev, Claude Emond, Linda Birnbaum, Jane Burns, Larisa Altshul, Donald Patterson, Wayman Turner, Mary Lee, Boris Revich, Russ Hauser Sep 2014

Predictors Of Serum Dioxin, Furan, And Pcb Concentrations Among Women From Chapaevsk, Russia, Olivier Humblet, Paige Williams, Susan Korrick, Oleg Sergeyev, Claude Emond, Linda Birnbaum, Jane Burns, Larisa Altshul, Donald Patterson, Wayman Turner, Mary Lee, Boris Revich, Russ Hauser

Mary M. Lee

Dioxins, furans, and polychlorinated biphenyls (PCBs) are persistent and bioaccumulative toxic chemicals that are ubiquitous in the environment. We assessed predictors of their serum concentrations among women living in a Russian town contaminated by past industrial activity. Blood samples from 446 mothers aged 23-52 years were collected between 2003-2005 as part of the Russian Children's Study. Serum dioxin, furan, and PCB concentrations were quantified using high-resolution gas chromatography-mass spectrometry. Potential determinants of exposure were collected through interviews. Multivariate linear regression models were used to identify predictors of serum concentrations and toxic equivalencies (TEQs). The median total PCB concentrations and total …


Mullerian Inhibiting Substance Ontogeny And Its Modulation By Follicle-Stimulating Hormone In The Rat Testes, Tatsuo Kuroda, Mary Lee, Christopher Haqq, David Powell, Thomas Manganaro, Patricia Donahoe Sep 2014

Mullerian Inhibiting Substance Ontogeny And Its Modulation By Follicle-Stimulating Hormone In The Rat Testes, Tatsuo Kuroda, Mary Lee, Christopher Haqq, David Powell, Thomas Manganaro, Patricia Donahoe

Mary M. Lee

Mullerian Inhibiting Substance (MIS) production in rat testes from the late fetal to the adult period and its modulation by gonadotropins in neonatal testes were studied using immunohistochemistry, northern analysis, and a graded organ culture bioassay for MIS. The intense immunohistochemical staining for MIS seen in fetal and newborn testes began to decrease gradually after the third postnatal day, then decreased dramatically on the fifth postnatal day. MIS immunohistochemical activity was then present at a low level until about the 20th postnatal day, after which it was barely detectable. The testes from rats treated with FSH at birth showed a …