Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Bioinformatics

Improved Computational Prediction Of Function And Structural Representation Of Self-Cleaving Ribozymes With Enhanced Parameter Selection And Library Design, James D. Beck Dec 2022

Improved Computational Prediction Of Function And Structural Representation Of Self-Cleaving Ribozymes With Enhanced Parameter Selection And Library Design, James D. Beck

Boise State University Theses and Dissertations

Biomolecules could be engineered to solve many societal challenges, including disease diagnosis and treatment, environmental sustainability, and food security. However, our limited understanding of how mutational variants alter molecular structures and functional performance has constrained the potential of important technological advances, such as high-throughput sequencing and gene editing. Ribonuleic Acid (RNA) sequences are thought to play a central role within many of these challenges. Their continual discovery throughout all domains of life is evidence of their significant biological importance (Weinreb et al., 2016). The self-cleaving ribozyme is a class of noncoding Ribonuleic Acid (ncRNA) that has been useful for …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Identifying Gene-Gene Interactions That Are Highly Associated With Body Mass Index Using Quantitative Multifactor Dimensionality Reduction (Qmdr), Rishika De, Shefali S. Verma, Fotios Drenos, Emily R. Holzinger Dec 2015

Identifying Gene-Gene Interactions That Are Highly Associated With Body Mass Index Using Quantitative Multifactor Dimensionality Reduction (Qmdr), Rishika De, Shefali S. Verma, Fotios Drenos, Emily R. Holzinger

Dartmouth Scholarship

Despite heritability estimates of 40–70% for obesity, less than 2% of its variation is explained by Body Mass Index (BMI) associated loci that have been identified so far. Epistasis, or gene-gene interactions are a plausible source to explain portions of the missing heritability of BMI. Using genotypic data from 18,686 individuals across five study cohorts – ARIC, CARDIA, FHS, CHS, MESA – we filtered SNPs (Single Nucleotide Polymorphisms) using two parallel approaches. SNPs were filtered either on the strength of their main effects of association with BMI, or on the number of knowledge sources supporting a specific SNP-SNP interaction in …


A Classification And Characterization Of Two-Locus, Pure, Strict, Epistatic Models For Simulation And Detection, Ryan J. Urbanowicz, Ambrose L. S. Granizo-Mackenzie, Jeff Kiralis, Jason H Moore Jun 2014

A Classification And Characterization Of Two-Locus, Pure, Strict, Epistatic Models For Simulation And Detection, Ryan J. Urbanowicz, Ambrose L. S. Granizo-Mackenzie, Jeff Kiralis, Jason H Moore

Dartmouth Scholarship

BackgroundThe statistical genetics phenomenon of epistasis is widely acknowledged to confound disease etiology. In order to evaluate strategies for detecting these complex multi-locus disease associations, simulation studies are required. The development of the GAMETES software for the generation of complex genetic models, has provided the means to randomly generate an architecturally diverse population of epistatic models that are both pure and strict, i.e. all n loci, but no fewer, are predictive of phenotype. Previous theoretical work characterizing complex genetic models has yet to examine pure, strict, epistasis which should be the most challenging to detect. This study addresses three goals: …