Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Bioinformatics

Bayesian Causal Inference Of Cell Signal Transduction From Proteomics Experiments, Robert D. O. Ness Dec 2016

Bayesian Causal Inference Of Cell Signal Transduction From Proteomics Experiments, Robert D. O. Ness

Open Access Dissertations

Cell signal transduction describes how a cell senses and processes signals from the environment using networks of interacting proteins. In computational systems biology, investigators apply machine learning methods for causal inference to develop causal Bayesian network models of signal transduction from experimental data. Directed edges in the network represent causal regulatory relationships, and the model can be used to predict the effects of interventions to signal transduction. Causal inference approaches applied to proteomics experiments use statistical associations between observed signaling protein concentrations to infer a causal Bayesian network model, but there is no experimental and analysis framework for applying these …


Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull Jan 2015

Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull

Jeffrey S. Morris

Current methods for conducting expression Quantitative Trait Loci (eQTL) analysis are limited in scope to a pairwise association testing between a single nucleotide polymorphism (SNPs) and expression probe set in a region around a gene of interest, thus ignoring the inherent between-SNP correlation. To determine association, p-values are then typically adjusted using Plug-in False Discovery Rate. As many SNPs are interrogated in the region and multiple probe-sets taken, the current approach requires the fitting of a large number of models. We propose to remedy this by introducing a flexible function-on-scalar regression that models the genome as a functional outcome. The …