Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry

Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom Dec 2019

Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom

Graduate Theses and Dissertations

The work presented in this dissertation explores the structural dynamics in the chloroplast signal recognition particle pathway. Findings include cpSRP shows scanning functionality similar to that in the cytosolic SRP with the ribosome. The intrinsically disordered C-terminal tail of the Albino3 protein has some transient secondary structure. Upon binding to cpSRP43 in solution, separate secondary structure formation was identified in the C-terminal tail of Albino3. Finally, to increase efficiency of analyzing fluorescence time traces for this work, a modular software was produced.


Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller Nov 2019

Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller

Bioelectrics Publications

Mammalian cells express a variety of nucleic acid sensors as one of the first lines of defense against infection. Despite extensive progress in the study of sensor signaling pathways during the last decade, the detailed mechanisms remain unclear. In our previous studies, we reported increased type I interferon expression and the upregulation of several proposed cytosolic DNA sensors after transfection of several tumor cell types with plasmid DNA (pDNA). In the present study, we sought to reveal the early events in the cytosolic sensing of this nucleic acid in a myoblast cell line. We demonstrated that DNA-dependent activator of interferon …


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered …


Protein-Protein Interactions In Perilpin 5, Erin K. Hughes Apr 2019

Protein-Protein Interactions In Perilpin 5, Erin K. Hughes

Undergraduate Honors Thesis Projects

Many metabolic diseases contribute to a major part of the health crisis in the US. Type II diabetes mellitus and non-alcoholic fatty liver disease are two examples of metabolic diseases that are contributing to the current health crisis. Key to understanding these diseases and their progression is an understanding of neutral lipid metabolism. Perilipins are a class of five conserved proteins that are key regulators of lipid metabolism and are potentially involved in lipid trafficking within cells. The most recently discovered member of the family is perilipin 5, which is expressed most strongly in tissues that are highly oxidative such …


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we …


Structural Characterization Of Black Widow Spider Dragline Silk Proteins Crp1 And Crp4, Mikayla Shanafelt Jan 2019

Structural Characterization Of Black Widow Spider Dragline Silk Proteins Crp1 And Crp4, Mikayla Shanafelt

University of the Pacific Theses and Dissertations

Spider dragline silk is a biomaterial with outstanding material properties, possessing high-tensile strength and toughness. In nature, dragline silk serves a central role during spider locomotion and web construction. Today, scientists are racing to elucidate the molecular machinery governing silk extrusion, attempting to translate this knowledge into a mimicry process in the laboratory to create synthetic fibers for a wide range of different applications. During extrusion, it has been established that biochemical and mechanical forces govern spidroin folding, aggregation, and assembly. In black widow spiders, at least 7 different proteins have been identified as constituents of dragline silk fibers. These …


Sers For Protein Detection At A Single Molecule Level For Developing A New Medical Diagnostics Platform, Lamyaa Almehmadi Jan 2019

Sers For Protein Detection At A Single Molecule Level For Developing A New Medical Diagnostics Platform, Lamyaa Almehmadi

Legacy Theses & Dissertations (2009 - 2024)

A two-step process of protein detection at a single molecule level using Surface Enhanced Raman Spectroscopy (SERS) was developed as a new platform for medical diagnostics in this proof-of-concept study. First, a protein molecule was bound to a linker in the bulk solution and then this adduct was chemically reacted with the SERS substrate. Traut’s Reagent (TR) was used to thiolate Bovine serum albumin (BSA) in solution followed by chemical cross linking to a gold surface through a sulfhydryl group. A Glycine-TR adduct was used as a control sample to identify the protein contribution to the SER spectra. Gold SERS …