Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Biophysical Characterization Of The Folding, Membrane Topology And Ion Transport Activity Of Ucp2 Using Selective Trp Mutants, Tyler C. Auld Jan 2015

Biophysical Characterization Of The Folding, Membrane Topology And Ion Transport Activity Of Ucp2 Using Selective Trp Mutants, Tyler C. Auld

Theses and Dissertations (Comprehensive)

Human Uncoupling Protein 2 (hUCP2) is one of five known human UCPs which are found in the inner mitochondrial membrane and have been shown to facilitate the translocation of protons from the intermembrane space to the mitochondrial matrix. The detailed physiological role of UCP2 proton transport, the mechanism by which it mediates this proton transport, as well as its structure has also yet to be elucidated. In order to help determine the topology of UCP2 embedded in the membrane as well as its mechanism of proton transport, the intrinsic fluorescence properties of the two tryptophan residues (Trp) present in its …


Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms Jan 2015

Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms

Theses and Dissertations (Comprehensive)

Biofilms are a growing concern in the medical field due to their increased resistance to antibiotics. When found in a biofilm, bacteria can have antibiotic resistance 10-1000 times that of their planktonic counterparts. Therefore, it is important to study the formation of biofilms. Cellulose biofilms are formed by Enterobacteriaceae, such as many Escherichia coli and Salmonella spp. strains. Biofilms provide these species with benefits including antimicrobial protection, development of bacterial communities, promotion of DNA exchange, uptake of nutrients, and, in the case of cellulose biofilms, immune system evasion. Cellulose biofilms are controlled by the Bacterial cellulose synthesis (Bcs) complex located …