Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Apoptosis

Discipline
Institution
Publication Year
Publication

Articles 1 - 28 of 28

Full-Text Articles in Biochemistry

Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson May 2023

Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson

Honors Theses

Apoptosis is a type of regulated cell death important for normal embryonic development and maintenance of adult tissues by removing excess or dysfunctional cells to ensure proper functioning of organs. The Bcl-2 family of proteins determines whether apoptosis remains suppressed or becomes activated through the balance of interactions among pro-survival and pro-death members. A defining feature of the Bcl-2 family is a BH3 domain that drives interactions between the family members. Isoform 1 of the voltage dependent anion channel (VDAC1) has an important role in metabolism, but was recently found to have high homology with known BH3 domains. This study …


Apoptosis Induction In Jurkat T-Lymphocytes By Proton Pump Inhibitors (Ppis), Shreya Murali, Randall Reif Apr 2023

Apoptosis Induction In Jurkat T-Lymphocytes By Proton Pump Inhibitors (Ppis), Shreya Murali, Randall Reif

Student Research Submissions

Apoptosis, commonly known as programmed cell death, constantly occurs in humans. As a cancer cell increases in acidity, apoptosis is induced. In healthy cells, proton pump proteins allow for H+ ions to permeate cellular membranes, regulating pH. However, proton pump inhibitors (PPIs), such as omeprazole, prevent proton movement. In previous studies, omeprazole induced cell death in Jurkat T lymphocytes; however, there was no confirmation of whether the cells died through apoptosis, or through necrosis, where the cell bursts. By using Annexin-V staining, the effects of omeprazole, dexlansoprazole, and esomeprazole on apoptosis induction can be measured. Cell death was observed …


The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku Jan 2023

The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku

Biotechnology Theses

Lung cancer is the leading cause of cancer-related mortality in the world and NSCLC accounts for 85% of all lung cancer cases. The mainstay of treatment for patients with stage I, II and IIIA NSCLC is surgery, followed by post-operative cisplatin-based chemotherapy. Additional adjuvant therapy involving targeted tyrosine kinase inhibitors has been in use, however even for the targeted therapy, resistance eventually develops. Therefore, there is a need for identifying novel targets for this life-threatening disease. Given that preliminary studies in Ikebe lab revealed that myocardin knockdown significantly promoted caspase-3 degradation, in this study, using myocardin siRNA, we investigated the …


Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown Dec 2022

Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown

Seton Hall University Dissertations and Theses (ETDs)

1,1-bis(3’idolyl)-1(aryl)methane compounds (BIM compounds) have been shown to have anti-cancer properties in colon cancer, bladder cancer, and leukemia cells. The purpose of this work was to determine if BIM compounds could be an effective treatment of glioblastoma multiforme. Sulforhodamine B (SRB) assays showed that 20µM of the BIM compounds could inhibit cellular proliferation of the T98G glioblastoma multiforme cell line over 72 hours. Then immunoblotting was used to analyze the molecular pathway induced by BIM compounds. An increase in the expression of both BAX and cleaved caspase 3 suggest BIM compounds activate programmed cell death, or apoptosis in glioblastoma cells. …


Novel Regulatory Roles Of Endocytic Membrane Trafficking Proteins In Mitochondrial Homeostasis, Trey Farmer May 2020

Novel Regulatory Roles Of Endocytic Membrane Trafficking Proteins In Mitochondrial Homeostasis, Trey Farmer

Theses & Dissertations

Endocytic membrane trafficking is a basic cell process that is critical for regulating the transport of lipids and proteins. Our lab focuses on the cellular functions and mechanisms of the proteins that regulate these pathways. A key family of regulatory proteins is the C-terminal Eps15 Homology Domain (EHD) protein family. The EHD family includes EHD1-4, which are ubiquitously expressed in mammalian tissues. While these isoforms do have some overlapping functions, each protein also has distinct activities in regulating the shape and fission of membranes throughout the endocytic pathways. Specifically, EHD1 uses ATP hydrolysis to induce constriction and fission of endocytic …


Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf May 2020

Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf

MSU Graduate Theses

Chemotherapy is one of the most effective treatment plans for several cancer types. The recurrent side effects derived from chemotherapy agents have warranted the search for novel chemical compounds with better efficacy and minimal side effects. In line with this idea, I investigated effects of a group of newly synthesized metal based chemical compounds called cyanoximates on HeLa human cancer cells. Cyanoximates used were Pt(DECO)2, Pt(MCO)2, and Pd(DECO)2 along with the chemotherapy drug cisplatin as a positive control. I found that the metal cyanoximates reduced cell viability via apoptosis, and that Pt(DECO)2 was most …


Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee Apr 2020

Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee

Honors College Theses

Cancer remains a prevalent disease today. This disease may manifest itself in many different ways and affect a variety of tissues with everything from the brain to the blood. With this wide diversity of cancer types, treatment can be complicated since there is not a “one size fits all” treatment for the disease. Surgery, radiation, and chemotherapy are all options that must be weighed with their benefits and side effects. Ultimately though, there are not enough effective treatment options available for every type of cancer. This leaves many with the grim prognosis of never being cured. With this clear need …


Exploration Of Ataxia Telangiectasia And Rad3-Related’S (Atr’S) Role In Cell Death Regulation: Implications In Development, Cancer, And Stroke, Brian Cartwright Dec 2019

Exploration Of Ataxia Telangiectasia And Rad3-Related’S (Atr’S) Role In Cell Death Regulation: Implications In Development, Cancer, And Stroke, Brian Cartwright

Electronic Theses and Dissertations

From gametogenesis until death an organism’s genome is under constant bombardment from endogenous and exogenous sources of DNA damage. To maintain genomic integrity amid this damage, cells have evolved responses which allow them to either preserve viability for recovery or initiate self-destructive pathways depending on the severity of DNA damage. One protein involved in initiating and carrying out these responses is the protein kinase ataxia telangiectasia and Rad3-related (ATR). ATR is known primarily for its regulatory role in initiating the checkpoint-signaling cascade following DNA damage and replicative stress. These signaling events lead to cell cycle arrest, DNA repair, or apoptosis …


High Molecular-Weight Hyaluronan Prevents Basal Cell Carcinoma Via Promoting Apoptosis In Cancer-Initiating Adult Stem Cells, Violet Liu Apr 2019

High Molecular-Weight Hyaluronan Prevents Basal Cell Carcinoma Via Promoting Apoptosis In Cancer-Initiating Adult Stem Cells, Violet Liu

Electronic Thesis and Dissertation Repository

Basal cell carcinoma (BCC), a keratinocyte cancer, is the most common human neoplasm worldwide. Although rarely metastatic, BCC is associated with high morbidity rates with globally rising incidence rates. Accompanying the increase in newly diagnosed cases, the societal cost for BCC treatment in Canada is also expected to inflate, exceeding over $900 million/year by 2031. Chronic UVB exposure has been identified as the primary carcinogen that causes activating mutations in the hedgehog signaling pathway. However, there are no effective preventative methods against BCC, since meta-analyses report sunscreen application does not reduce BCC in compliant patients. The native high molecular-weight hyaluronan …


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a …


Probing Apoptotic Caspase Allostery And Exosite Interactions For Alternative Regulation, Derek J. Macpherson Mar 2019

Probing Apoptotic Caspase Allostery And Exosite Interactions For Alternative Regulation, Derek J. Macpherson

Doctoral Dissertations

Programmed cell death, or apoptosis is a critical homeostatic pathway that monitors the balance of cell life and death. Apoptosis is regulated by a class of enzymes known as the cysteine aspartic proteases, or the caspases. The 12 human caspases that play important roles in the progression and regulation of apoptosis and inflammation. Caspases are tightly regulated by numerous factors including enzymatic activation, post-translational modifications, metal ligand binding, and protein modulation. Aberrant caspase activation and regulation has been implicated in the progression of numerous diseases such as proliferative diseases and neurodegeneration. The deeply entwined nature of caspases and apoptosis makes …


Exploitation And Regulation Of Apoptotic Caspases, Scott Eron Mar 2017

Exploitation And Regulation Of Apoptotic Caspases, Scott Eron

Doctoral Dissertations

Caspases are the cysteine proteases that govern apoptotic cell death. The regulation of these enzymes is critical in order to restrain their death-inducing capabilities until the appropriate moment. Infidelity of caspase regulation and activation underlies a plethora of human diseases ranging from cancer to neurodegeneration. This establishes a pressing need for comprehensive studies of the apoptotic caspases in order to understand all aspects of their regulation, activation, substrate preferences, structure, and function. A detailed structural view of caspase regulation would have lasting implications for future therapeutic avenues targeting caspase function or apoptosis. This dissertation chronicles caspase regulation by phosphorylation as …


Identification And Characterization Of The Anticancer Potential Of Indigenous Medicinal Plants Of The Arabian Peninsula, Sameera Omar Mohammed Saeed Balhamar Oct 2016

Identification And Characterization Of The Anticancer Potential Of Indigenous Medicinal Plants Of The Arabian Peninsula, Sameera Omar Mohammed Saeed Balhamar

Theses

Indigenous plant species historically used for their medicinal properties are a tremendous source for bringing newer and safer drugs to the market. A concerted effort is needed to characterize their medicinal potential and identify new molecules that could be exploited in modern medicine. The current study was undertaken to study the anticancer properties of several indigenous plants that are used by the local population of the Arabian Peninsula and beyond for various medicinal purposes. Towards this end, we acquired different plant extracts from five plants, namely Boswellia sacra (BS), Cleome droserifolia (CD), Teucrium muscatensis (TM), Orchadenus arabicus (OA), and Acredocarpus …


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER …


Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely May 2016

Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely

Electronic Theses and Dissertations

Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule that functions to facilitate bacteria-bacteria communication. C12 has also been reported to affect many aspects of human host cell physiology, including evoking cell death in various types of cells. However, the signaling pathway(s) leading to C12-triggerred cell death remains unclear. To clarify cell death signaling induced by C12, we examined mouse embryonic fibroblasts (MEFs) deficient in one or more caspases. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in cells, probably through the direct induction of mitochondrial membrane permeabilization. Previous studies indicate that …


Design And Synthesis Of Isatin-Based Caspase Inhibitors For Ruthenium Caging Applications, Kasun Chinthaka Ratnayake Jan 2015

Design And Synthesis Of Isatin-Based Caspase Inhibitors For Ruthenium Caging Applications, Kasun Chinthaka Ratnayake

Wayne State University Theses

ABSTRACT

DESIGN AND SYNTHESIS OF ISATIN BASED CASPASE INHIBITORS FOR RUTHENIUM CAGING APPLICATIONS

by

KASUN CHINTHAKA RATNAYAKE

August 2015

Advisor: Jeremy J. Kodanko, Ph.D.

Major: Chemistry (Organic)

Degree: Master of Science

Apoptosis is the energy dependent programmed cell death. Improper function of apoptosis could lead to diseases such as cancers, strokes, Alziemer’s disease. Caspases are the enzymes involved in the later stage of this process. Peptidyl and non-peptidyl caspase inhibitors have been synthesized recently. These non-peptidyl compound classes which consist of pyrrolidinyl-5-sulfo isatins have showed a greater potency against executioner caspases, caspase-3 and -7. According to literature and for further …


An Investigation Of Bag3 Knockdown And Its Effects On The Cytotoxicity Of Laromustine, Colin Sheehan Jan 2015

An Investigation Of Bag3 Knockdown And Its Effects On The Cytotoxicity Of Laromustine, Colin Sheehan

Honors Theses

Laromustine is a sulfonylhydrazine anticancer prodrug whose main cytotoxic arises from its ability to interfere with DNA replication of dividing cells. Multiple studies have suggested that Laromustine induces a form of cell death known as apoptosis. In a previous study investigating the mechanism of apoptosis, bcl2-associated athanogene 3 (BAG3) demonstrated significant upregulation in the presence of Laromustine. Given its anticancer ability, we selected BAG3 as a target for further investigation. BAG3 knockdown through transient shRNA transfections was performed in U138 glioblastoma multiforme cells and verified using qRT-PCR analysis. Finally, cell death assays were used to assess Laromustine’s cytotoxic effect on …


The Role Of The Ku70 Vwa Domain In The Response To Dna Double Strand Breaks, Victoria L. Fell Nov 2014

The Role Of The Ku70 Vwa Domain In The Response To Dna Double Strand Breaks, Victoria L. Fell

Electronic Thesis and Dissertation Repository

Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, and is best characterized for its central role as the initial DNA end binding factor in the “classical” non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. In this work we …


The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu Oct 2014

The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) is a widely abused psychostimulant that induces neurotoxicity to several brain regions, including the striatum. Similar to dopamine (DA) in chemical structure, METH can be transported into DA pre-synaptic terminals, evoking the neurodegeneration in DA terminals and post-synaptic striatal neurons. Despite the critical role of DA in METH-induced neurodegeneration, no pharmaceutical therapeutics has been approved for these conditions. It is therefore essential to investigate the endogenous factors regulating the dopaminergic system. The neuropeptide neurotensin has emerged as a potential modulator of METH-induced striatal neurodegeneration mainly due to its intimate interactions with dopamine in the striatum.

In this study, …


Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina May 2014

Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina

Seton Hall University Dissertations and Theses (ETDs)

The cancer epidemic continues to afflict millions of humans world-wide each year and despite a renewed hope with the development of new and improved forms of therapy, a cure for cancer remains an elusive goal. This is partly related to the rise of resilient forms of tumors that have evolved with resistance towards conventional chemotherapy and radiation treatments. Moreover, these non-specific therapeutic regimens are highly toxic, leading to severe immunosuppressive effects which poisons the body and compromises the road towards remission. In an effort to mitigate these limitations, cancer-targeting approaches are currently experiencing a renaissance in the translation of new …


The Cytotoxic Effect Of The Bcl-2 Family Of Proteins In Breast Cancer Cells, Yamileth Chin Jan 2014

The Cytotoxic Effect Of The Bcl-2 Family Of Proteins In Breast Cancer Cells, Yamileth Chin

Theses and Dissertations

Breast cancer is the second leading cause of death amongst women ages 20 to 59. Despite advancements in cancer therapies, more research is necessary to improve the diagnoses and treatment of several types of breast cancer. Paclitaxel (Taxol) is a commonly utilized anti-cancer drug for various types of solid tumors. However, the molecular mechanism utilized by paclitaxel to induce cell death is still elusive. Previous studies in our laboratory have shown that the pro-apoptotic BCL-2 family protein, BAK (BCL-2 homologous antagonist/killer) plays an important role in paclitaxel-induced cell death. In untreated breast cancer cells, BAK is associated with the anti-apoptotic …


A Novel Cardiac Function Of Sumo2/3 And Senp5 Dependent Pathway And Its Physiological Impact On Congestive Cardiomyopathy, Eun Young Kim Aug 2013

A Novel Cardiac Function Of Sumo2/3 And Senp5 Dependent Pathway And Its Physiological Impact On Congestive Cardiomyopathy, Eun Young Kim

Dissertations & Theses (Open Access)

A Novel cardiac function of SUMO2/3 and SENP5 dependent pathway and its physiologic impact on congestive cardiomyopathy

Publication No.___________

Eun Young Kim, M.S.

Supervisory professor: Robert J. Schwartz, Ph.D.

SUMOylation regulates diverse cellular processes including transcription, cell cycle, protein stability, and apoptosis. Although SUMO1 has been extensively studied so far, relevance of SUMO2/3 is unclear, especially in heart. Here we show that failing heart induces SUMO2/3 conjugation. Increased SUMO2/3-dependent modification leads to congestive heart disease such as cardiac hypertrophy by promoting cardiac cell death. Calpain2 and Calpastatin as a novel SUMO2 targets have been known to be involved in mitochondrial-independent …


Investigating The Interplay Between Protein Kinases And Caspases, Jacob P. Turowec Mar 2013

Investigating The Interplay Between Protein Kinases And Caspases, Jacob P. Turowec

Electronic Thesis and Dissertation Repository

The balance between cell survival and death is a crucial process in human development and tissue homeostasis, but is also misregulated in disease. In large part, apoptosis is controlled by caspases, a hierarchical series of cysteine aspartic acid proteases that demolish the cell by cleaving key structural and enzymatic proteins, but emerging paradigms have highlighted the ability of kinases to regulate caspase activity. One way in which kinases can control the progression of apoptosis is through phosphorylation of caspase substrates, which acts to prevent caspase cleavage of that target.

In this thesis, we develop new strategies to study this regulatory …


Biochemical And Cellular Mechanisms Of Retina And Retinal Pigment Epithelium Apoptosis, Srinivasa Rao Sripathi Jan 2013

Biochemical And Cellular Mechanisms Of Retina And Retinal Pigment Epithelium Apoptosis, Srinivasa Rao Sripathi

Dissertations, Master's Theses and Master's Reports - Open

Oxidative stress, intense light exposure and oxygen imbalances such as hypoxic or hyperoxic conditions perturb mitochondria, nuclear function and further lead to cellular damage of retina and retinal pigment epithelial (RPE) cells. Our major aim is to understand the various biochemical and proteomic events that occur during the progression of retina and RPE cell death. The comprehensive objectives of this dissertation are to understand the functional aspects of protein expression, posttranslational modifications, protein or lipid binding changes, phenotypic, morphological alterations and their regulation during the retina and RPE apoptosis under oxidative stress. The entire study is divided into four chapters …


Investigating The Effects Of Bag3 Knockdown On The Cytotoxicity Of The Anticancer Drug Laromustine, Kayla Gross Jan 2013

Investigating The Effects Of Bag3 Knockdown On The Cytotoxicity Of The Anticancer Drug Laromustine, Kayla Gross

Honors Theses

Laromustine is a sulfonylhydrazine anticancer prodrug whose cytotoxicity results from the formation of interstrand cross-links caused by the synergistic action of co- generated 2-chloroethylating and carbamoylating species. The cytotoxic activities of Laromustine involve the induction of apoptosis. Described herein is an investigation into this drug’s effects on apoptotic gene expression in HL-60 cells using qRT-PCR. Significant changes in the expression levels of 13 genes were observed, most dramatically in the upregulation of the bcl2-associated athanogene 3 (BAG3) gene. Given the pro-survival role of BAG3 in the cell, this investigation sought to decrease BAG3 mRNA levels in HL-60 cells using transient …


Dissecting The Molecular Role Of Distinct Binding Interfaces On The Retinoblastoma Tumor Suppressor In Growth Control And Tumorigenesis., Matthew J. Cecchini Jun 2011

Dissecting The Molecular Role Of Distinct Binding Interfaces On The Retinoblastoma Tumor Suppressor In Growth Control And Tumorigenesis., Matthew J. Cecchini

Electronic Thesis and Dissertation Repository

The retinoblastoma tumor suppressor protein (pRB) functions to maintain proliferative control and act as a barrier to tumorigenesis. pRB is capable of regulating E2F transcription factors to mediate control of proliferation through transcriptional regulation of S-phase target gene expression. In addition, pRB can stabilize the CDK inhibitor p27 through an interaction with two ubiquitin ligase complexes. Further, pRB is capable of forming a unique interaction with E2F1 termed the ‘specific’ interaction that is capable of blocking E2F1 induced apoptosis. These functions of pRB are mediated by distinct binding interfaces and their contributions to the overall functionality of pRB are not …


Infection With Chlamydia Pneumoniae In Neuronal Cells Alters The Expression Of Genes Involved In Apoptosis And Autophagy Pathways, Annette K. Slutter Jan 2011

Infection With Chlamydia Pneumoniae In Neuronal Cells Alters The Expression Of Genes Involved In Apoptosis And Autophagy Pathways, Annette K. Slutter

PCOM Biomedical Studies Student Scholarship

Dysfunctions in cellular mechanisms such as apoptosis and autophagy have been implicated in the neurodegeneration associated with Alzheimer’s disease (AD). Autophagy in AD pathogenesis has been linked to the endosomal-lysosomal system, which has been shown to play a role in amyloid processing. Studies have suggested that apoptosis may contribute to the neuronal cell loss observed in AD; however, there is no evidence of the apoptotic process leading to terminal completion. Aβ1-42 has been shown to induce apoptosis in neurons and may be an initiating factor in AD. Our previous studies demonstrated that neurons infected with C. pneumoniae are resistant to …


Induction Of Apoptosis In Human Prostate Cancer Cells By Resveratrol, Gary Zulfikar Morris Oct 2000

Induction Of Apoptosis In Human Prostate Cancer Cells By Resveratrol, Gary Zulfikar Morris

Chemistry & Biochemistry Theses & Dissertations

Recently attention has been brought to trans-resveratrol's {TR) anticancer activity, as determined through a number of cultured cancer cell models. This activity was attributed to TR behaving as an estrogen, and the orientation of TR' s hydroxyl groups. Based on this work it was of interest to determine whether TR would also be toxic in prostate cancer cells; if toxic, did TR induce necrosis or apoptosis in the cells; was it toxic through hormone mediated pathways; and were TR's hydroxyl groups responsible for its biological activity. To this end, cellular viability was assessed in two different prostate cancer cell …