Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2023

CRISPR

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Developing Regulated Crispr Systems To Control Bacterial Microbiomes, Gregory M. Pellegrino Dec 2023

Developing Regulated Crispr Systems To Control Bacterial Microbiomes, Gregory M. Pellegrino

Electronic Thesis and Dissertation Repository

Changes to the human microbiome’s composition and metabolome are associated with numerous diseases and alterations to xenobiotic metabolism. As such, targeting the human microbiome is an increasingly popular option for therapeutic interventions. However, traditional therapies that target the microbiome such as antibiotics lack specificity, which can affect the beneficial species of the microbiome and cause adverse health outcomes such as the rise of antimicrobial-resistant bacteria. Therefore, the research and development of specific, targeted antimicrobial therapies is crucial to effectively treating microbiome dysbioses.
CRISPR and CRISPRi provide easily modifiable, RNA-guided mechanisms mediated by the Cas9 or dCas9 enzymes to induce sequence-specific …


Functionalizing Conjugative Systems To Deliver Crispr Nucleases For Targeted Bacterial Killing, Thomas A. Hamilton Jul 2023

Functionalizing Conjugative Systems To Deliver Crispr Nucleases For Targeted Bacterial Killing, Thomas A. Hamilton

Electronic Thesis and Dissertation Repository

The interactions between humans and microbes are intimately important to human health, with both commensal and pathogenic bacteria affecting homeostasis and disease. Increasing concern over antibiotic resistance in bacterial pathogens represents a significant threat to human health, and use of traditional antibiotics to treat infections can be detrimental to commensal bacteria as well as pathogens, demonstrating a need for more specific antibacterial reagents. RNA-guided CRISPR nucleases, which can target and cleave genomes of interest, are a potential tool for specific bacterial targeting. A key limitation to the use of CRISPR antimicrobials is effective and robust delivery to the target bacteria. …