Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Effects Of The Microenvironment Surrounding Cys433 In Arabidopsis Β-Amylase-1 And -3 On The Sensitivity To Glutathionylation By Nitrosoglutathione, Matthew R. Kohler May 2017

Effects Of The Microenvironment Surrounding Cys433 In Arabidopsis Β-Amylase-1 And -3 On The Sensitivity To Glutathionylation By Nitrosoglutathione, Matthew R. Kohler

Senior Honors Projects, 2010-2019

Glutathionylation is a reversible post-translational modification of proteins involving the transfer of glutathione to the thiols of specific cysteine residues. While the mechanism behind glutathionylation is known, the specificity of cysteine glutathionylation is not understood. It is known, however, that the two main factors affecting the susceptibility to glutathionylation are the reactivity and accessibility of cysteines in proteins, which is determined by the microenvironment. Using β-amylases (BAMs) 1 and 3 from Arabidopsis thaliana, which have different sensitivities to nitrosoglutathione (GSNO), as a model, I attempted to provide insight into why some cysteines are glutathionylated by GSNO and others are …


Development Of Chemical Tools To Investigate Protein S-Glutathionylation In Response To Metabolic Alteration, Kusal Theekshana Gayan Samarasinghe Jan 2017

Development Of Chemical Tools To Investigate Protein S-Glutathionylation In Response To Metabolic Alteration, Kusal Theekshana Gayan Samarasinghe

Wayne State University Dissertations

Oxidative stress is a common characteristic of age-related diseases such as vascular diseases, diabetes and cancer. Many diseases are known to be regulated by glutathionylation. Glutathionylation is referred to as the formation of disulfide bond between a protein cysteine and a glutathione. To understand the molecular mechanisms behind the disease initiation and progression, identification of such glutathionylated proteins is important. Even though existing methods have been widely used, several limitations of these methods hinder the identification of such proteins in disease conditions. Therefore, we developed a versatile chemical method that generates clickable glutathione inside the cells. In this method, we …