Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry

Deciphering Sulfur Amino Acid Metabolism In Developing Seeds Of Common Bean, Jaya Joshi Aug 2017

Deciphering Sulfur Amino Acid Metabolism In Developing Seeds Of Common Bean, Jaya Joshi

Electronic Thesis and Dissertation Repository

With increasing food insecurity in the populated world, the number of people affected by chronic undernourishment is also increasing. Alone, protein energy malnutrition is linked to 6 million deaths annually. Despite being a good source of protein and dietary fibre, the quality of bean protein is limited because of sub optimal levels of essential sulfur amino acids: methionine and cysteine. Levels of cysteine and methionine in developing seeds have an inverse relationship with the non-protein sulfur amino acid S-methyl-cysteine (S-methylCys) and dipeptide g-glutamyl-S-methyl-cysteine (g-Glu-S-methylCys).

One of the strategies to improve protein quality in …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


Effects Of The Microenvironment Surrounding Cys433 In Arabidopsis Β-Amylase-1 And -3 On The Sensitivity To Glutathionylation By Nitrosoglutathione, Matthew R. Kohler May 2017

Effects Of The Microenvironment Surrounding Cys433 In Arabidopsis Β-Amylase-1 And -3 On The Sensitivity To Glutathionylation By Nitrosoglutathione, Matthew R. Kohler

Senior Honors Projects, 2010-2019

Glutathionylation is a reversible post-translational modification of proteins involving the transfer of glutathione to the thiols of specific cysteine residues. While the mechanism behind glutathionylation is known, the specificity of cysteine glutathionylation is not understood. It is known, however, that the two main factors affecting the susceptibility to glutathionylation are the reactivity and accessibility of cysteines in proteins, which is determined by the microenvironment. Using β-amylases (BAMs) 1 and 3 from Arabidopsis thaliana, which have different sensitivities to nitrosoglutathione (GSNO), as a model, I attempted to provide insight into why some cysteines are glutathionylated by GSNO and others are …


Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell Jan 2017

Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell

Honors Projects

Wall associated kinases (WAKs) are cell membrane bound receptor kinases that bind pectin and pectin fragments (OGs).The binding of WAKs to pectin sends a growth signal required for cell elongation and plant development. WAKs bind OGs with higher affinity than native pectin and instead activate a stress response. Glycine rich proteins (GRPs) are secreted cell wall proteins of unknown function. Seven GRPs with 65% sequence similarity are coded on a 90kb locus of Arabidopsis chromosome 2. GRP3 and WAK1 have been shown to bind in vitro, but single null mutations have no discernible phenotype, suggesting that the GRPs are redundant. …


Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera Jan 2017

Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera

Honors Undergraduate Theses

In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single …


Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier Jan 2017

Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier

Electronic Theses and Dissertations

Soybean is an excellent candidate for sustainable agriculture due to its production of nutritious, versatile beans and the ability to form symbiotic organs called root nodules that perform nitrogen fixation. As demand for both yield and sustainable agriculture continue to increase, root nodules offer an attractive alternative to expensive and environmentally harmful nitrogen fertilizers. Understanding root nodule formation may open genetic engineering avenues for optimizing nitrogen fixation performance and transferring the nodule-formation ability to other plants. A major determinant of nodule numbers and quality in soybean is microRNA 160 (miR160), which dictates developmental stage-specific auxin sensitivity by targeting repressor auxin …