Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2013

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 179

Full-Text Articles in Biochemistry

The Effects Of Chronic Simvastatin Treatment On The Expression Of Behavioral Symptoms In A Transgenic Mouse Model Of Huntington’S Disease, Ashley Whitmarsh Dec 2013

The Effects Of Chronic Simvastatin Treatment On The Expression Of Behavioral Symptoms In A Transgenic Mouse Model Of Huntington’S Disease, Ashley Whitmarsh

University of New Orleans Theses and Dissertations

Huntington’s disease (HD) is a heritable, neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. An unstable CAG expansion within the gene normally encoding for the Huntingtin protein is responsible. The expanded mutant form of Huntingtin and the putative protein co-factor Rhes interact and cause cell death within the striatum. We hypothesized chronic treatment with simvastatin, a cholesterol lowering drug, would disrupt the biosynthetical pathway which gives both Rhes and its target cells binding sites and render Rhes inactive. Healthy and HD mice were treated with simvastatin or a vehicle. Animals’ motor behavior was assessed with three separate tests over …


Biochemical Assay Optimization And Computational Screening Efforts To Identify Potential Luxs Inhibitors, Keeshia Q. Wang Dec 2013

Biochemical Assay Optimization And Computational Screening Efforts To Identify Potential Luxs Inhibitors, Keeshia Q. Wang

Master's Theses

Quorum sensing (QS) is a process of coordination of bacterial gene expression in response to cell population. System two QS is regulated by the small signaling molecule autoinducer-2 (AI-2) and is implicated in the infectious behaviors of various bacterial species. AI-2 is biosynthesized from S-ribosylhomocysteine (SRH) by the enzyme LuxS and induces interspecies cell-to-cell communication. Inhibition of LuxS would therefore inhibit interspecies QS. Herein, a search for novel molecular species that will competitively bind with SRH in the LuxS binding site is performed in silico. Computational screening results are then validated in vitro using an optimized LuxS inhibition …


Synthesis, Characterization, And Application Of High Surface Area, Mesoporous, Stabilized Anatase Tio2 Catalyst Supports, Rebecca Elizabeth Olsen Dec 2013

Synthesis, Characterization, And Application Of High Surface Area, Mesoporous, Stabilized Anatase Tio2 Catalyst Supports, Rebecca Elizabeth Olsen

Theses and Dissertations

Nanomaterials have attracted substantial attention in the area of catalysis due to the unique properties they exhibit such as high surface areas, intricate pore networks and unique morphologies. TiO2 has attracted attention as a catalyst since the discovery of its high photocatalytic activity by Fuishima and Honda in 1972. Given its high thermal stability, low cost, low environmental impact, and versatility, TiO2 is a widely used commercial catalyst and catalyst support. TiO2 is used in many applications such as photocatalysis is also an excellent support material for noble metals in a number of oxidative synthesis and pollution-control reactions. Though TiO2 …


Exploring The Structure And Biochemistry Of Oxidation-Mediated Inhibitation Of The Peptidyl-Prolyl Isomerase Pin1, Brendan T. Innes Dec 2013

Exploring The Structure And Biochemistry Of Oxidation-Mediated Inhibitation Of The Peptidyl-Prolyl Isomerase Pin1, Brendan T. Innes

Electronic Thesis and Dissertation Repository

Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that has been shown to be neuroprotective in aging-related neurodegenerative diseases such as Alzheimer's disease (AD). However, it is not active in AD brain, and a recent proteomic screen of Mild Cognitive Impairment (MCI) brain samples revealed that Pin1 is oxidized in the brains of these pre-AD patients. This suggests that this oxidation may be the cause of the loss of the neuroprotective Pin1 function in AD. The Pin1 active site contains a functionally critical cysteine residue (Cys113) with a low predicted pKa, making it highly susceptible to oxidation. We hypothesize that Pin1 is …


Nonlinear Spectroscopic Investigation Of Adsorption To C-18 Model Stationary Phase, Anthony D. Peterson Dec 2013

Nonlinear Spectroscopic Investigation Of Adsorption To C-18 Model Stationary Phase, Anthony D. Peterson

Theses and Dissertations

Reversed-phase liquid chromatography (RPLC) is a commonly used separation technique in chemistry. Nevertheless, the mechanistic interactions at the molecular level among the eluent, analyte, and the stationary phase are not fully understood. Because of this limited understanding, optimization of the separation must be done experimentally. Learning more about molecular interactions should aid in improving separations. We are currently using second-harmonic generation (SHG) spectroscopy to investigate how analytes adsorb to the surface. SHG is a spectroscopic technique that produces signal only at places of non-isotropic symmetry; this typically occurs at surfaces. SHG can be used to produce surface isotherms of test …


Regulation Of Eukaryotic Mcm2-7 Activity, Lance F. Dasilva Dec 2013

Regulation Of Eukaryotic Mcm2-7 Activity, Lance F. Dasilva

Electronic Thesis and Dissertation Repository

The transfer of genetic material from one cell generation to the next requires precise genome duplication. Aberrant DNA replication can lead to genomic instability and contribute to diseases arising from an unregulated cell cycle, such as cancer. Replicative DNA polymerases require a single-stranded (ssDNA) template from which to produce newly synthesized DNA. In eukaryotes, ssDNA is generated by the heterohexameric minichromosome maintenance 2 through 7 (Mcm2-7) replicative helicase that unwinds duplex DNA. Strict temporal separation of helicase loading and activation at multiple replication origins ensures once per cell cycle replication. The processes involved in activating Mcm2-7 to unwind DNA during …


Formation And Analysis Of Zinc Oxide Nanoparticles And Zinc Oxide Hexagonal Prisms And Optical Analysis Of Cadmium Selenide Nanoparticles, Jared M. Hancock Dec 2013

Formation And Analysis Of Zinc Oxide Nanoparticles And Zinc Oxide Hexagonal Prisms And Optical Analysis Of Cadmium Selenide Nanoparticles, Jared M. Hancock

Theses and Dissertations

In this dissertation, methods to synthesize ZnO are reported. First, zinc oxide nanoparticles were synthesized with small amounts of transition metal ions to create materials called dilute magnetic semiconductors (DMS). We employed a low temperature sol-gel method that produces ZnO nanoparticles of reproducible size and incorporates cobalt, nickel, and manganese ions into the nanoparticles. Conditions were controlled such that a range of amounts of Co, Ni, and Mn were incorporated. The incorporation was tracked by color changes in the white ZnO powder to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the nanoparticles were on …


Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang Dec 2013

Mechanisms Of The Anti-Pneumococcal Function Of C-Reactive Protein, Toh B. Gang

Electronic Theses and Dissertations

Human C-reactive protein (CRP) increases survival of and decreases bacteremia in mice infected with Streptococcus pneumoniae. Such protection of mice against pneumococcal infection is seen only when CRP is administered into mice 6 hours before to 2 hours after the injection of pneumococci, but not when CRP is given to mice at a later time. Our first aim was to define the mechanism of CRP-mediated initial protection of mice against infection. It was proposed that CRP binds to phosphocholine (PCh) moieties present in the cell wall and activates the complement system on the pneumococcal surface that kills the pathogen. …


An Examination Of The Inhibitory Effects Of Antibiotic Combinations On Ribosome Biosynthesis In Staphylococcus Aureus, Justin Beach Dec 2013

An Examination Of The Inhibitory Effects Of Antibiotic Combinations On Ribosome Biosynthesis In Staphylococcus Aureus, Justin Beach

Electronic Theses and Dissertations

Bacteremia initiated by Staphylococcus aureus infections can be a serious medical problem. Although a number of different antibiotics are used to combat staphylococcal infections, resistance has continued to develop. Combination therapy for certain infections has been used to reduce the emergence of resistance when a single agent has become ineffective. We hypothesize that the use of rifampicin and ciprofloxacin in combination with azithromycin, known for its inhibitory effects on the bacterial ribosome, can create potential synergistic effects resulting from indirect effects on ribosomal subunit synthesis.

To determine this we measured the effects of single and multiple antibiotics on cell growth …


The Staphylococcus Pseudintermedius Adhesin Spsd Contains A Central Fibronectin-Binding Domain, Andrea S. Bordt Dec 2013

The Staphylococcus Pseudintermedius Adhesin Spsd Contains A Central Fibronectin-Binding Domain, Andrea S. Bordt

Dissertations & Theses (Open Access)

Staphylococcus pseudintermedius is a Gram-positive bacterium significant because of its ability to cause costly and difficult to treat veterinary infections worldwide. It exhibits several similarities to Staphylococcus aureus, however, very little is known about its surface adhesins. Surface adhesins in S. aureus are significant contributors to pathogenesis. S. pseudintermedius encodes the surface protein SpsD, which contains characteristics of the microbial surface components recognizing adhesive matrix molecules family and confers attachment of the heterologous host Lactococcus lactis to fibronectin. This work has identified a centrally-located fibronectin binding domain in SpsD which binds the 30 kDa N-terminal domain of fibronectin with …


Evaluation Of Vdr-Coactivator Inhibitors Using Biochemical And Cell-Based Assays, Athena Marie Baranowski Dec 2013

Evaluation Of Vdr-Coactivator Inhibitors Using Biochemical And Cell-Based Assays, Athena Marie Baranowski

Theses and Dissertations

ABSTRACT

EVALUATION OF VDR–COACTIVATOR INHIBITORS USING BIOCHEMICAL AND CELL–BASED ASSAYS

by

Athena Baranowski

The University of Wisconsin–Milwaukee, 2013

Under the Supervision of Dr. Alexander Arnold

The vitamin D receptor (VDR) is a ligand–dependent transcription factor, which belongs to the nuclear receptor superfamily. VDR–mediated gene regulation is governed by coregulators (coactivators and corepressors). VDR coregulator binding inhibitors (CBIs), which were discovered using high throughput screening (HTS), were evaluated using cell–based assays and biochemical assays to determine their ability to inhibit the interaction between VDR and steroid receptor coactivator–2 (SRC–2). Determining their ability to inhibit the VDR–SRC–2 interaction can lead to the …


Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi Dec 2013

Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi

Graduate Theses and Dissertations

Water-soluble Quantum Dots (QDs) are highly sensitive fluorescent probes that are often used to study biological species. One of the most common ways to render QDs water-soluble for such applications is to apply hydrophilic thiolated ligands to the QD surface. However, these ligands are labile and can be easily exchanged on the QD surface, which can severely limit their application. As one way to overcome this limitation while maintaining a small colloidal size of QDs, we developed a method to stabilize hydrophilic thiolated ligands on the surface of QDs through the formation of a crosslinked shell using a photocrosslinking approach. …


A Synthetic Biology Approach To Engineering New Anticancer Agents, Shane Robert Wesener Dec 2013

A Synthetic Biology Approach To Engineering New Anticancer Agents, Shane Robert Wesener

Theses and Dissertations

Histone deacetylase (HDAC) inhibitors are becoming increasingly valuable therapeutic agents in treatment of several types of malignancies. FK228 is a depsipeptde anticancer compound produced by Chromobacterium violaceum no. 968 through a nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) hybrid assembly line. In the present study, reconstitution of the biosynthetic pathway responsible for the production of FK228 revealed cross-talk between modular PKS and fatty acid synthase. This pathway contains two PKS modules on the DepBC enzymes that lack a functional acyltransferase (AT) domain, and no apparent AT-encoding gene exists within the gene cluster or its vicinity. We reported through heterologous expression of …


Biochemical And Biophysical Studies Of Novel Features Of Ras-Related Protein Interactions, Kyla Marie Morinini Morris Dec 2013

Biochemical And Biophysical Studies Of Novel Features Of Ras-Related Protein Interactions, Kyla Marie Morinini Morris

Graduate Theses and Dissertations

The Ras superfamily of G-proteins are of great research interest for structure-function relationships among proteins as they act as molecular switches in the regulation of various biochemical reactions in the cell. They are regulated by protein-protein interactions targeted to the highly flexible switch regions. Mutations in G-proteins or their effectors may cause alterations in structure and/or function that can lead to overactivity.

The Ras-related protein Cell division cycle 42 (Cdc42) is important in regulating cell-signaling processes. The T35A mutation in Cdc42 leads to a decrease in flexibility of the Switch I region responsible for effector binding. The kinetics of the …


Investigating The Importance Of The N-Terminal Negative Residues In Human Prmt1, Brooke Siler Dec 2013

Investigating The Importance Of The N-Terminal Negative Residues In Human Prmt1, Brooke Siler

Undergraduate Honors Capstone Projects

Many essential physiological pathways, such as cell proliferation, gene expression, and cardiovascular health are regulated by Protein Arginine Methyltransferases (PRMTs) through methylation of arginine residues in protein substrates. Understanding how PRMTs interact with their substrates is pivotal to understanding the biological role of these enzymes, and fundamental to the goal of identifying possible sites to be inhibited through drug therapy. Natural variations in the N-terminus of the PRMTl enzymes and data collected in our lab suggest that the N-terminus is important for activity and/or the binding of protein substrates. Preliminary data collected had led us to hypothesize that the negatively …


Investigation Into The Effects Of Pegylation On The Thermodynamic Stability Of The Ww Domain, Sam S. Matthews Dec 2013

Investigation Into The Effects Of Pegylation On The Thermodynamic Stability Of The Ww Domain, Sam S. Matthews

Theses and Dissertations

The covalent attachment of poly(ethylene glycol) (PEG) to a protein surface (known as PEGylation), has been demonstrated to increase the serum half-life of therapeutic proteins by reducing kidney clearance and immunogenicity and by protecting against proteolysis. Theses beneficial effects could be further enhanced if PEGylation consistently increased protein conformational stability (i.e. the difference in free energy between the folded and unfolded states). However, the effects of PEGylation on protein conformational stability are unpredictable; PEGylation has been reported to increase, decrease, or have no effect on the conformational stability of medicinal proteins.This thesis details the results of two studies aimed at …


Ferritin-Based Photo-Oxidation Of Biomass For Nanoparticle Synthesis, Bioremediation, And Hydrogen Evolution, Oscar Petrucci Dec 2013

Ferritin-Based Photo-Oxidation Of Biomass For Nanoparticle Synthesis, Bioremediation, And Hydrogen Evolution, Oscar Petrucci

Theses and Dissertations

The cell is the basic unit of all living organisms. It is an amazing machine capable of self-replicating, growing, and synthesizing and shuttling thousands of compounds. To perform all of these activities the cell needs energy. The original source of energy for all living beings is the Sun. The energy of the sun is collected by the autotrophs (mostly plants) through photosynthesis and stored in the chemical bonds of carbohydrates and lipids through carboxylic acid intermediates; animals use these compounds to obtain the energy for their cells. Most of the energy extracted by the cell comes from the citric acid …


Obstacles And Solutions To Studying Functional Adhesives Using Vibrational Sum-Frequency Generation Spectroscopy, Angela Renee Andersen Dec 2013

Obstacles And Solutions To Studying Functional Adhesives Using Vibrational Sum-Frequency Generation Spectroscopy, Angela Renee Andersen

Theses and Dissertations

Important aspects of adhesion occur at interfaces, including structures that may be different from those in the bulk materials. However, probing the orientation of molecules in functional adhesives poses a significant challenge because adhesive molecules are always located at a buried interface. The limited penetration depth of surface-specific analysis prohibits the study of buried interfaces using those techniques. The large quantity of bulk molecules relative to the adhesive molecules interacting at the interface results in the bulk signal swamping out adhesive signal in bulk analysis techniques. An interface-specific technique is required to study functional adhesives. One such technique that has …


Iron-Regulated Cyanobacterial Predominance And Siderophore Production In Oligotrophic Freshwater Lakes, Ryan J. Sorichetti Nov 2013

Iron-Regulated Cyanobacterial Predominance And Siderophore Production In Oligotrophic Freshwater Lakes, Ryan J. Sorichetti

Electronic Thesis and Dissertation Repository

The frequency and intensity of cyanobacterial blooms (cyanoblooms) is increasing globally. Contrary to existing phosphorus (P) and nitrogen (N) paradigms describing cyanobloom proliferation in eutrophic (nutrient-rich) freshwater lakes, many of the recent cyanobloom reports pertain to oligotrophic (nutrient-poor) freshwater lakes with no prior history of cyanobloom occurrence. There exists a critical research need to re-visit existing conceptual models, identify regulating factors currently unaccounted for and improve our ability to effectively detect and measure cyanobacterial toxins (cyanotoxins) in lakes. Iron (Fe) is required in nearly all pathways of cyanobacterial macronutrient use, though its direct role in regulating cyanobacterial biomass is not …


Characterization Of The Interaction Between Bone Sialoprotein And Type I Collagen, Rose Yee Nov 2013

Characterization Of The Interaction Between Bone Sialoprotein And Type I Collagen, Rose Yee

Electronic Thesis and Dissertation Repository

The mechanism of biomineralization is unknown. In bone, it has been proposed that an acidic phosphoprotein of the extracellular matrix (ECM) is important in the nucleation of hydroxyapatite (HA). The mineralized tissue protein, bone sialoprotein (BSP), has been shown to be a potent nucleator of HA and this activity is increased upon binding to type I collagen. The collagen-binding domain of BSP has been determined to be a highly conserved region (spanning residues 18-45); however, the area of collagen involved in this interaction is unknown.

In this study, a chemical cross-linking method was initially utilized to map the BSP-binding region …


Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies Oct 2013

Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies

Open Access Dissertations

The endosomal sorting complexes required for transport (ESCRT) machinery is a ubiquitin-dependent molecular mechanism made of up of four individual complexes: ESCRT-0, -I, -II, III, that is necessary for regulating the degradation of cell surface receptors directed towards the lysosome. Not only are the ESCRTs implicated in endosomal sorting and trafficking of proteins, its members also have roles in other important biological processes such as: cytokinesis, HIV budding, transcriptional regulation, and autophagy. As a function of its involvement in several processes throughout the cell, the ESCRT machinery is implicated in a wide variety of diseases including cancer, neurological disease, bacterial …


Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler Oct 2013

Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler

Open Access Dissertations

Protein phosphorylation is perhaps the most ubiquitous posttranslational modification in eukaryotes and recent studies suggest that upwards of 75% of human proteins are phosphorylated. Many proteins are phosphorylated at multiple sites, often controlled by multiple kinases and phosphatases. Multisite phosphorylation can differentially affect the functional and regulatory cellular outcomes. For example, dephosphorylation of a protein at a particular site may inhibit nuclear localization of a protein while dephosphorylation of a different site may be necessary for enzymatic activation of a protein. Thus, multisite protein phosphorylation can complicate our understanding of the biological significance and the functional consequences of protein phosphorylation. …


The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl Oct 2013

The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl

Open Access Dissertations

The purpose of this research was to advance the understanding of lower termite digestive physiology and discover potential biocatalysts that can aid in the degradation of lignocellulosic biomass. Various protein characterization and gene expression methods were used throughout this research in order to accomplish these objectives. The results of this dissertation indicate that: 1) termites and their symbionts act in a synergistic manner to degrade biomass in vitro, 2) the host fraction of the gut (i.e., foregut and midgut) is the likely site of glucose absorption, 3) the termite and its symbionts contribute specific enzymes to the digestive process, 4) …


Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John Oct 2013

Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John

Open Access Dissertations

The work in this thesis details the design, synthesis, and biological evaluation of molecular inhibitors for the inhibition of biologically relevant enzymes. The first three chapters of this thesis concern the polyphenol resveratrol and its inhibition of the quinone reductase 2 (QR2) enzyme. The work on this subject resulted in the complete design, synthesis, biological and structural evaluation of a second generation library of resveratrol analogues. From this work we identified a novel resveratrol analogue that inhibits QR2 in a previously unknown binding orientation. The fourth chapter of this thesis details the de novo design of molecules for the inhibition …


Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman Oct 2013

Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman

Open Access Dissertations

Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry.

The work demonstrated in this dissertation greatly involves gas-phase covalent and non-covalent Schiff base chemistry on peptide and protein ions. The reagent dianion, 4-formyl 1,3-benzene disulfonic acid, has been used to covalently modify unprotonated primary …


Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari Oct 2013

Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari

Open Access Dissertations

NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative metabolite profiling analysis. However, accurate quantitative analysis of biological systems especially using one dimensional NMR has been challenging due to signal overlap. In contrast, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass spectrometry. In this thesis we show improved sensitivity and resolution of NMR experiments imparted by 15N and 13C isotope tagging which enables the accurate analysis of plasma metabolites. To date, isotope tagging has been used …


Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple Oct 2013

Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple

Open Access Dissertations

Many proteins require prenylation in order to be biologically functional. Some such proteins include the small Ras and Rho GTPase superfamilies, nuclear lamins A and B, and the kinesin motor proteins CENP-E and F. Prenyltransferase (PTase) inhibition is currently being explored as a possible treatment not only for cancer but for a wide variety of other diseases.

Clinical studies revealed that the effectiveness of farnesyltransferase inhibitors (FTIs) to treat Ras-dependent tumors is determined by which isoform of Ras is overactive. Unfortunately the majority of Ras-dependent tumors have a mutation in either the N- or K-Ras isoforms; both of these isoforms …


Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla Oct 2013

Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla

Open Access Dissertations

To better understand a class of transporters known as Calcium/Cation Antiporters (CaCAs), the bacterial calcium/proton antiporter CAXCK31 was purified and characterized. New methods were developed for its heterologous overexpression and purification. These methods help to define stress responses to toxic membrane overproduction in E. coli and may be broadly applicable to studies of membrane proteins. The results from a variety of biochemical and biophysical experiments demonstrated that CAXCK31 exists as a dimer in the membrane and can be purified in the dimeric state. The methods used include chemical cross-linking, FRET, and SEC-MALS. In addition, various transport properties of CAXCK31, including …


Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik Oct 2013

Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik

Open Access Dissertations

New methods to monitor tyrosine kinase activity are critical for studying kinases in cell biology, drug discovery and the clinic. Peptide-based biosensors for detection of kinase activity utilitize a kinase specific artificial peptide substrate, which can report intercellular kinase activity through the incorporation of phosphate.

An artificial Syk substrate peptide was developed and incorporated with other functional modules to produce a Syk biosensor. These modules included a biotin-tag for affinity capture, a photo-cleavable amino acid to allow release of the substrate from the delivery module and the cell penetrating peptides TAT. A live cell kinase assay utilizing this biosensor was …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …