Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou Jan 2019

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou

Theses and Dissertations--Molecular and Cellular Biochemistry

RBMS3 belongs to the family of c-myc gene single-strand binding proteins (MSSPs) that play important roles in transcriptional regulation. Here, we show that RBMS3 functions as a tumor promoter in triple-negative breast cancer (TNBC), a highly aggressive BC subtype. Analysis of RBMS3 expression shows that RBMS3 is upregulated at both mRNA and protein levels in TNBC cells. Functionally, overexpression of RBMS3 increases cell migration, invasion and cancer stem cell (CSC) behaviors. Moreover, RBMS3 induces expression of epithelial-mesenchymal transition (EMT) and CSC markers. Conversely, loss of RBMS3 in TNBC BT549 cells inhibits cell proliferation, migration and mesenchymal phenotype. Correlation analysis shows …


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we …


Computational Tools For The Untargeted Assignment Of Ft-Ms Metabolomics Datasets, Joshua Merritt Mitchell Jan 2019

Computational Tools For The Untargeted Assignment Of Ft-Ms Metabolomics Datasets, Joshua Merritt Mitchell

Theses and Dissertations--Molecular and Cellular Biochemistry

Metabolomics is the study of metabolomes, the sets of metabolites observed in living systems. Metabolism interconverts these metabolites to provide the molecules and energy necessary for life processes. Many disease processes, including cancer, have a significant metabolic component that manifests as differences in what metabolites are present and in what quantities they are produced and utilized. Thus, using metabolomics, differences between metabolomes in disease and non-disease states can be detected and these differences improve our understanding of disease processes at the molecular level. Despite the potential benefits of metabolomics, the comprehensive investigation of metabolomes remains difficult.

A popular analytical technique …


Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer Jan 2019

Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the sole carbohydrate storage molecule found in mammalian cells and plays an important role in cellular metabolism in nearly all tissues, including the brain. Defects in glycogen metabolism underlie the glycogen storage diseases (GSDs), genetic disorders with variable clinical phenotypes depending on the mutation type and affected gene(s). Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy and a non-classical GSD. LD typically manifests in adolescence with tonic-clonic seizures, myoclonus, and a rapid, insidious progression. Patients experience increasingly severe and frequent epileptic episodes, loss of speech and muscular control, disinhibited dementia, and severe cognitive decline; death …