Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry

Novel Methods For Manipulating Ion Types In The Solution And Gas Phases For The Structural Analysis Of Biomolecules Using Mass Spectrometry, Christine M Fisher Apr 2015

Novel Methods For Manipulating Ion Types In The Solution And Gas Phases For The Structural Analysis Of Biomolecules Using Mass Spectrometry, Christine M Fisher

Open Access Dissertations

Mass Spectrometry has become a valuable tool for the analysis of a variety of molecules, making it applicable to many fields. The advent of nanoelectrospray ionization (nESI) as a soft/low energy ionization technique has enabled the analysis of large, intact biomolecules. Most mass spectrometry experiments consist of three main steps: ionization, probe step(s), and mass analysis. The present work focuses on a variety of methods for altering ion types at various stages of the mass spectrometry experiment to affect ion fragmentation. Ion types can be manipulated in the solution/droplet phases using novel nESI emitters, generated from borosilicate theta capillaries. These …


Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He Oct 2014

Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He

Open Access Dissertations

Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and …


The Modification Of Brucine Derivatives As Chiral Ligands And Its Application In The Asymmetric Synthesis, Jian-Yuan Li Oct 2014

The Modification Of Brucine Derivatives As Chiral Ligands And Its Application In The Asymmetric Synthesis, Jian-Yuan Li

Open Access Dissertations

The modification of brucine derivatives as chiral ligands and the use of a multifaceted chiral ligand, brucine diol, under different reaction conditions to produce various optical isomers is described. In Chapter 1, the generation of a number of brucine derivatives is described. Taking the advantage of brucine-diol's excellent molecular recognition capability for multiple organic functional groups, we focused on the synthetic modifications of brucine-diol and the synthesis of brucine N-oxide. We also produced various brucine derivatives with different functional moieties in good yields and selectivities. ^ In Chapter 2, we described the investigation of brucine N-oxide catalyzed Morita-Baylis-Hillman …


Transformation Of Biomass Carbohydrates By Transition Metal Catalysts, Christine M Bohn Oct 2014

Transformation Of Biomass Carbohydrates By Transition Metal Catalysts, Christine M Bohn

Open Access Dissertations

By selectively removing functional groups from biomass derived carbohydrates, valuable platform chemicals can be generated from renewable sources. Through dehydration chemistry glucose can be upgraded into 5-(Hydroxymethyl)-2-furfuraldehyde (HMF) and levulinic acid. Iron (III) chloride hexahydrate has shown moderate activity to transform glucose into HMF and has also shown high yields and selectivity for the production of levulinic acid. Typically synthesized from acidic solutions made with mineral acids, levulinic acid has now been produced in high yields with a metal salt. The difference between maximizing production for HMF or levulinic acid from the same catalyst relies on the control of the …


New Experimental And Theoretical Tools For Studying Protein Systems With Elements Of Structural Disorder, Tairan Yuwen Oct 2014

New Experimental And Theoretical Tools For Studying Protein Systems With Elements Of Structural Disorder, Tairan Yuwen

Open Access Dissertations

Disordered proteins are one class of proteins which do not possess well-folded three-dimensional structures as their native conformations. Many eukaryotic proteins have been found to be fully disordered or contain certain disordered regions. Disordered proteins usually display several characteristic properties, such as increased motional freedom and the conformational heterogeneity caused by that. The elements of structural disorder are commonly involved in many important biological functions and are implicated in many diseases. Therefore, the study of disordered proteins has become one of the most important research topics in recent years. This thesis presents results from three different research projects; the common …


Synthesis And Dna-Binding Studies With Two Stericallyfriendly Porphyrin Frameworks, Srijana Ghimire Jul 2014

Synthesis And Dna-Binding Studies With Two Stericallyfriendly Porphyrin Frameworks, Srijana Ghimire

Open Access Dissertations

Peripheral substituents on cationic porphyrins play a significant role during binding with DNA hosts. Possible applications of these systems in photodynamic therapy as well as in anti-bacterial and anti-cancer therapies motivate the binding studies. For characterizing DNA binding motifs different methods are useful including absorption, emission, and circular dichroism spectroscopies, as well as viscometry and X-ray crystallography. With the classic H2 T4 porphyrin, or 5,10,15,20-tetra(N-methylpyridinium-4-yl)porphyrin, the mode of binding varies with the base composition of the DNA host. The porphyrin binds adenine-thymine rich sequences externally whereas intercalation occurs in guanine-cytosine rich sequences. The McMillin group has made some …


Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John Oct 2013

Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John

Open Access Dissertations

The work in this thesis details the design, synthesis, and biological evaluation of molecular inhibitors for the inhibition of biologically relevant enzymes. The first three chapters of this thesis concern the polyphenol resveratrol and its inhibition of the quinone reductase 2 (QR2) enzyme. The work on this subject resulted in the complete design, synthesis, biological and structural evaluation of a second generation library of resveratrol analogues. From this work we identified a novel resveratrol analogue that inhibits QR2 in a previously unknown binding orientation. The fourth chapter of this thesis details the de novo design of molecules for the inhibition …


Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman Oct 2013

Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman

Open Access Dissertations

Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry.

The work demonstrated in this dissertation greatly involves gas-phase covalent and non-covalent Schiff base chemistry on peptide and protein ions. The reagent dianion, 4-formyl 1,3-benzene disulfonic acid, has been used to covalently modify unprotonated primary …


Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari Oct 2013

Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari

Open Access Dissertations

NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative metabolite profiling analysis. However, accurate quantitative analysis of biological systems especially using one dimensional NMR has been challenging due to signal overlap. In contrast, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass spectrometry. In this thesis we show improved sensitivity and resolution of NMR experiments imparted by 15N and 13C isotope tagging which enables the accurate analysis of plasma metabolites. To date, isotope tagging has been used …


Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple Oct 2013

Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple

Open Access Dissertations

Many proteins require prenylation in order to be biologically functional. Some such proteins include the small Ras and Rho GTPase superfamilies, nuclear lamins A and B, and the kinesin motor proteins CENP-E and F. Prenyltransferase (PTase) inhibition is currently being explored as a possible treatment not only for cancer but for a wide variety of other diseases.

Clinical studies revealed that the effectiveness of farnesyltransferase inhibitors (FTIs) to treat Ras-dependent tumors is determined by which isoform of Ras is overactive. Unfortunately the majority of Ras-dependent tumors have a mutation in either the N- or K-Ras isoforms; both of these isoforms …


Engineering The Nanoparticle Surface For Protein Recognition And Applications, Mrinmoy De May 2009

Engineering The Nanoparticle Surface For Protein Recognition And Applications, Mrinmoy De

Open Access Dissertations

Proteins and nanoparticles (NPs) provide a promising platform for supramolecular interaction. We are currently exploring both fundamental and applied aspects of this interaction. On the fundamental side, we have fabricated a series of water-soluble anionic and cationic NPs to interact with cationic and anionic proteins respectively. A Varity of studies such as, activity assay, fluorescence titration, isothermal titration calorimetry etc. were carried out to quantify the binding properties of these functional NPs with those proteins. Those studies reveal the prospect of tuning the affinity between the nanoparticles and proteins by the surface modification. On the application side, we have used …