Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biochemistry

Towards Understanding Osmolyte Effects On Folate(S) And Dihydrofolate Reductase Proteins, Purva Prashant Bhojane Dec 2016

Towards Understanding Osmolyte Effects On Folate(S) And Dihydrofolate Reductase Proteins, Purva Prashant Bhojane

Doctoral Dissertations

Osmolytes are small molecules that alter water activity and probe role of water in biological processes. Osmotic stress approach explored the role of water in ligand binding to dihydrofolate reductase (DHFR). DHFR catalyzes NADPH dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which is essential for the synthesis of DNA, amino acids and other metabolic intermediates. R67 DHFR is a plasmid-encoded DHFR that confers resistance against trimethoprim, which is a potent inhibitor of E.coli chromosomal DHFR.

Osmolytes addition decreases the affinity of the substrate towards both the DHFRs. Weak preferential interactions between the osmolytes and DHF impede substrate binding to …


Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li Dec 2016

Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li

Doctoral Dissertations

Photosystem I (PSI) forms trimeric complexes in most characterized cyanobacteria. We had reported the tetrameric form of PSI in the unicellular cyanobacterium, Chroococcidiopsis sp. TS-821 (TS-821). Using Cryo-EM, a 3D model of the PSI tetramer structure at 11.5 [Angstrom] resolution was obtained and a 2D map within the membrane plane of at 6.1 [Angstrom]. In contrast to the three-fold symmetry in trimeric PSI crystal structure from T. elongatus, two different inter-monomer interactions involving PsaLs are found in the PSI tetramer. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria. Additionally, this tetrameric …


Investigating The Impact Of Small Molecule Ligands And The Proteostasis Network On Protein Folding Inside The Cell, Karan Hingorani Nov 2016

Investigating The Impact Of Small Molecule Ligands And The Proteostasis Network On Protein Folding Inside The Cell, Karan Hingorani

Doctoral Dissertations

The folded forms of most proteins are critical to their functions. Despite the complexity of the cellular milieu and the presence of high-risk deleterious interactions, there is a high level of fidelity observed in the folding process for entire proteomes. Two important reasons for this are the presence of the quality control machinery consisting of chaperones and degradation enzymes that work jointly to optimize the population of the folded state and interaction partners that re-enforce the functional state and add to the competitive advantage of an organism. While substantial effort has been directed to understand protein folding and interactions in …


Electron Transport To Photosystem I By Soluble Carriers: Evolution Of The Interacting Pair, Khoa Dang Nguyen Aug 2016

Electron Transport To Photosystem I By Soluble Carriers: Evolution Of The Interacting Pair, Khoa Dang Nguyen

Doctoral Dissertations

Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI) reaction centers via the Z-­‐scheme. Both of these pigment– membrane protein complexes are found in cyanobacteria, algae, and plants. PSI, unlike PSII, is remarkably stable and does not undergo limiting photo-­‐damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H2. Here, …


Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis Aug 2016

Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis

Doctoral Dissertations

The natural recalcitrance of plant cell walls is a major commercial hurdle for plant biomass to be converted into a viable energy source as alternative to fossil fuels. To circumvent this hurdle manipulation of carbohydrate enzymes active in the cellulose and hemicellulose portions of the plant cell wall can be utilized to improve feedstocks. Production of cellulolytic enzymes by plants have been evaluated for reducing the cost associated with lignocellulosic biofuels. Plants have successfully served as bioreactors producing bacterial and fungal glycosyl hydrolases, which have altered plant growth to improve saccharification. A bioprospecting opportunity lies with the utilization of insect …


Decoding The Cellular Zipcode: Functional Analysis Of Transit Peptide Motifs And Mechanistic Implications In Plastid Targeting And Import, Kristen N. Holbrook Aug 2016

Decoding The Cellular Zipcode: Functional Analysis Of Transit Peptide Motifs And Mechanistic Implications In Plastid Targeting And Import, Kristen N. Holbrook

Doctoral Dissertations

Eukaryotic organisms are defined by their compartmentalization and various organelles. The membranes that define these organelles require complex nanomachines (known as translocons) to selectively mediate the import of proteins from the cytosol where they are synthesized into the organelle. The plastid, (specifically the chloroplast) which is characteristic of plant cells, possibly represents the most complex system of protein sorting, requiring many different translocons located in the three membranes found in this organelle. Despite having a small genome, the vast majority of plastid-localized proteins are nuclear-encoded and must be post-translationally imported from the cytosol. These proteins are encoded as a larger …


Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey Aug 2016

Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey

Doctoral Dissertations

In plants, ethylene functions as a hormone regulating many growth and developmental processes. Ethylene receptors in plants resemble bacterial two-component signaling systems. Because of this it, ethylene receptors are thought to have been acquired by gene transfer from the cyanobacterial endosymbiont that lead to the development of the chloroplast. However, prior to this work, functional ethylene receptors were thought to only be found in green plants. Here, we show that the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) contains a functional ethylene receptor, SynEtr1. SynEtr1 contains a predicted ethylene binding domain, a photosensory cyanobacteriochrome (CBCR) domain, and a histidine …


Pinpointing The Molecular Basis For Metal Ion Effects On Plasminogen Activator Inhibitor-1 (Pai-1), Joel Cullen Bucci Aug 2016

Pinpointing The Molecular Basis For Metal Ion Effects On Plasminogen Activator Inhibitor-1 (Pai-1), Joel Cullen Bucci

Doctoral Dissertations

Plasminogen activator inhibitor type-1 (PAI-1) specifically inhibits the proteases tissue type plasminogen activator and urokinase plasminogen activator to control the activation of fibrinolysis. Vitronectin interacts with PAI-1 primarily through the somatomedin B (SMB) domain to stabilize and localize PAI-1 to sites of injury. Our laboratory observed that transition metals such as copper2+ have VN dependent, reciprocal effects on how long PAI-1 remains active. We aim to determine the molecular basis for effects of copper2+ on PAI-1 activity. We employed a computational algorithm (MUG) to predict metal binding clusters, and introduced mutations hypothesized to create metal binding deficiency. We …


New Insights Into An Old Interaction: Developing A Model For Pai-1:Vn Interactions, Letitia Nichole Puster Aug 2016

New Insights Into An Old Interaction: Developing A Model For Pai-1:Vn Interactions, Letitia Nichole Puster

Doctoral Dissertations

Active human Plasminogen Activator Inhibitor 1 (PAI-1) is most often found in complex with Vitronectin (VN), an ~62kDa glycoprotein. Research has shown PAI-1 and VN form higher order complexes in tissues, and our work indicates a 2:1 (PAI-1:VN) stoichiometry for these complexes. A logical model for PAI-1:VN interaction proposes that two PAI-1 molecules bind VN at separate sites. However, our small-angle neutron scattering (SANS) data suggest that there is a PAI-1: PAI-1:VN interaction, in which PAI-1 forms a dimer when in complex with VN. We tested this novel arrangement of PAI-1 within the complex by using a variety of biophysical …


Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau Jul 2016

Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau

Doctoral Dissertations

Intracellular protein destruction is a carefully coordinated and timed regulatory mechanism that cells utilize to modulate growth, adaptation to environmental cues, and survival. In Caulobacter crescentus, a bacterium known for studies of bacterial cell division cycle, the response regulator CpdR couples phosphorylation events with the AAA+ protease ClpXP to provide punctuated degradation of crucial substrates involved in cell cycle regulation. CpdR functions like an adaptor to alter substrate choice by ClpXP, however it remains unclear how CpdR influences its multiple targets. In this thesis, we show that, unlike canonical ClpXP adaptors, CpdR alone does not strongly bind its substrate. …


Kinetic And Dynamic Insights Into The Substrate Interactions And Catalysis Of Factor Inhibiting Hif-1 (Fih-1), Cristina B. Martin Jul 2016

Kinetic And Dynamic Insights Into The Substrate Interactions And Catalysis Of Factor Inhibiting Hif-1 (Fih-1), Cristina B. Martin

Doctoral Dissertations

inhibiting HIF-1 (FIH-1) modulates the master regulator of hypoxia sensing, hypoxia inducible factor-1 (HIF-1), by transcriptional repression making it an attractive potential target for treatment of hypoxia-related diseases. Given that similar enzymes are present within the cell and that they have other important physiological roles, defining the therapeutic window by which it can be selectively targeted becomes an issue. Consequently, it’s necessary to have a deeper understanding of the substrate interactions in FIH-1 that contributes to catalysis as this is one avenue that can be explored for future therapeutic investigations. The overall goal of this dissertation is to gain kinetic …


Exploring The Impact Of The E. Coli Proteostasis Network On The Folding Fate Of Proteins With Different Intrinsic Biophysical Properties, Kristine Faye R. Pobre Mar 2016

Exploring The Impact Of The E. Coli Proteostasis Network On The Folding Fate Of Proteins With Different Intrinsic Biophysical Properties, Kristine Faye R. Pobre

Doctoral Dissertations

The three-dimensional (3D) native structure of most proteins is crucial for their functions. Despite the complex cellular environment and the variety of challenges that proteins experience as they fold, proteins can still fold to their native states with high fidelity. The reason for this is the presence of the cellular proteostasis network (PN), consisting of molecular chaperones and degradation enzymes, that collaborates to maintain proteostasis, in which the necessary levels of functional proteins are optimized. Although extensive research has been carried out on the mechanisms of individual components of the proteostasis network, little is known about how these components contribute …


The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto Mar 2016

The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto

Doctoral Dissertations

Thorough insight into a protein’s structure is necessary to understand how it functions and what goes wrong when it malfunctions. The structure of proteins, however, is not easily analyzed. The analysis must take place under a narrow range of conditions or risk perturbing the very structure being probed. Furthermore, the wide diversity in size and chemistry possible in proteins significantly complicates this analysis. Despite this numerous methods have been developed in order to analyze protein structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques are capable of characterizing the structure of particularly challenging proteins. This is done through …