Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Biochemistry

Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase Feb 2022

Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase

Dissertations, Theses, and Capstone Projects

Faithful transmission of genetic information is requisite for the propagation of all life. DNA replication in each of the three domains of life requires the separation of double stranded DNA (dsDNA) into single stranded DNA (ssDNA) which then serves as a template for genomic duplication of each original DNA strand. Initiation of replication events occurs by tightly regulated processes during which specialized proteins are loaded at a specific locus within the genome, termed the origin of replication, in preparation of bidirectional replication events. A replicative helicase must be loaded or assembled on both strands of DNA at the origin to …


Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein Feb 2022

Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein

Dissertations, Theses, and Capstone Projects

Voltage gated sodium channels (VGSC) are membrane proteins that serve an important function in the central nervous system (CNS), peripheral nervous system (PNS), and cardiac muscles amongst others. The main function of VGSC is in the propagation of electrical signals by depolarizing excitable cells. Nine mammalian VGSC subtypes have been characterized, NaV1.1 – NaV1.9, that are expressed in a tissue specific manner, each with unique gating properties. Numerous diseases have been linked to defects in VGSC including epilepsy, mental retardation, long QT syndrome, and Brugada disease. Furthermore, these channels are one of the primary targets of …


Machine Learning And Solvation Theory For Drug Discovery, Lieyang Chen Sep 2021

Machine Learning And Solvation Theory For Drug Discovery, Lieyang Chen

Dissertations, Theses, and Capstone Projects

Drug discovery is a notoriously expensive and time-consuming process; hence, developing computational methods to facilitate the discovery process and lower the associated costs is a long-sought goal of computational chemists. Protein-ligand binding, which provides the physical and chemical basis for the mechanism of action of most drugs, occurs in an aqueous environment, and binding affinity is determined not only by atomic interactions between the protein and ligand but also by changes in their interactions with surrounding water molecules that occur upon binding. Thus, a quantitative understanding of the roles water molecules play in the protein-ligand binding process is an essential …


Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian Feb 2021

The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian

Dissertations, Theses, and Capstone Projects

Cryptococcus neoformans is a globally distributed opportunistic fungal pathogen and the causative agent of life threatening cryptococcal meningoencephalitis in immunocompromised individuals, resulting in ~180,000 deaths each year worldwide. A primary virulence-associated trait of this organism is the production of melanin. Melanins are a class of diverse pigments produced via the oxidation and polymerization of aromatic ring compounds that have a characteristically complex, heterogenous, and amorphous structure. They are synthesized by representatives of all biological kingdoms and share a multitude of remarkable properties such as the ability to absorb ultraviolet (UV) light and protect against ionizing radiation. Melanin production in fungi …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel Feb 2021

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel

Dissertations, Theses, and Capstone Projects

During unfavorable cellular conditions (e.g., tumor hypoxia, viral infection, nutrient deprivation, etc.), the canonical, cap-dependent translation initiation pathway in human cells is suppressed by sequestration of the cap-binding protein, eukaryotic initiation factor(eIF) 4E, by 4E-binding proteins. Circumvention of cap-dependent translation shutdown has been linked to tumor development and cancer progression. The stress-induced repression of cap-dependent translation has also been correlated with increased eIF4GI and its homolog, Death Associated Protein 5 (DAP5) expression levels, suggesting these factors have a role in cap-independent translation. Despite several evidence pointing towards a link upregulation of eIF4GI and /DAP5 levels during stress conditions, and the …


Dna Damage Recognition And Uvrb Loading By Uvra Within The Nucleotide Excision Repair Pathway, Silas Hartley Jun 2020

Dna Damage Recognition And Uvrb Loading By Uvra Within The Nucleotide Excision Repair Pathway, Silas Hartley

Dissertations, Theses, and Capstone Projects

Maintaining the cellular genome is paramount to survival by any organism. A mutated genome can have detrimental effects on different cellular processes, especially replication and transcription. Cells maintain their genome using different deoxyribonucleic acid (DNA) repair pathways. The nucleotide excision repair (NER) pathway has a unique capability of repairing the genome from several different mutations, deletions, and adducts. In bacteria, the NER pathway accomplishes repair through four important steps: damage recognition by UvrA, damage verification by UvrB, DNA incision by UvrC, and repair synthesis using various cellular machinery.

UvrA forms a head-to-head dimer (UvrA2) with two ATPase sites …


Advanced Computational Methodologies To Study Binding Free Energies Of Biomolecular Complexes, Rajat Kumar Pal Feb 2020

Advanced Computational Methodologies To Study Binding Free Energies Of Biomolecular Complexes, Rajat Kumar Pal

Dissertations, Theses, and Capstone Projects

Molecular recognition is the basis of biological mechanisms and is a key element to consider while formulating effective and safe drugs. Pharmaceutical drugs are designed so as to bind a target protein even at very low concentrations to alter the diseased conditions without interfering with normal biological processes. In a rational drug design process, this is achieved by acquiring information about the chemical structure and the physical and chemical properties of the target protein receptor to gain insights on how changing the chemical composition of the substrate drug could affect the protein-drug interaction and binding affinities. Computational models are used …


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine …


Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly Sep 2019

Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly

Dissertations, Theses, and Capstone Projects

The potency and specificity of bioactive peptides have propelled these agents to the forefront of pharmacological research. However, delivery of peptides to their molecular target in cells is a major obstacle to their widespread application. A Trojan Horse strategy of packaging a bioactive peptide within a modified protein cage to protect it during transport, and releasing it at the target site, is a promising delivery method. Recent work has demonstrated that the viral capsid of the P22 bacteriophage can be loaded with an arbitrary, genetically-encoded peptide, and externally decorated with a cell-penetrating peptide, such as HIV-Tat, to translocate across in …


Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang Feb 2019

Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang

Dissertations, Theses, and Capstone Projects

Interactions between proteins play a key role in nearly all cellular process, and therefore, disruption of such interactions may lead to many different types of cellular dysfunctions. Hence, pathologic protein-protein interactions (PPIs) constitute highly attractive drug targets and hold great potential for developing novel therapeutic agents for the treatment of incurable human diseases. Unfortunately, the identification of PPI inhibitors is an extremely challenging task, since traditionally used small molecule ligands are mostly unable to cover and anchor on the extensive flat surfaces that define those binary protein complexes. In contrast, large biomolecules such as proteins or peptides are ideal fits …


Structural Studies On Calcium/Calmodulin-Dependent Activation Of Eukaryotic Elongation Factor 2 Kinase, Kwangwoon Lee Feb 2019

Structural Studies On Calcium/Calmodulin-Dependent Activation Of Eukaryotic Elongation Factor 2 Kinase, Kwangwoon Lee

Dissertations, Theses, and Capstone Projects

Eukaryotic elongation factor 2 kinase (eEF-2K) is a key modulator of the rate of protein synthesis. Activated by calcium-loaded calmodulin (Ca2+-CaM), eEF-2K phosphorylates its only known physiological substrate, eEF-2, on a specific threonine residue (Thr-56). Phosphorylated eEF-2 has reduced affinity for the ribosome, and results in a significant decrease in the rate of translation elongation. Modulation of the rate of translation elongation plays a crucial role in proteostasis – adequate regulation of protein synthesis, protein folding, and protein degradation that greatly influences cellular growth and survival. Binding of Ca2+-CaM triggers activation of eEF-2K and remains intact …


Towards An Atomic Level Model Of The Structure And Calmodulin Mediated Activation Of Eef-2k, Nathan E. Will Sep 2018

Towards An Atomic Level Model Of The Structure And Calmodulin Mediated Activation Of Eef-2k, Nathan E. Will

Dissertations, Theses, and Capstone Projects

Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM) dependent member of the a-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific residue (Thr-56), decreasing its affinity for the ribosome and reducing the rate of peptide chain elongation during protein translation. In contrast to the “release-of-inhibition’ mechanism operative in most CaM-dependent proteins kinases, the activation of eEF-2K is proposed to occur through a two-step process subsequent to the engagement of CaM and involves (1) auto-phosphorylation on T348 and (2) engagement of an allosteric site by phospho-T348 leading to a state with the highest activity towards the substrate eEF-2. …


Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz Sep 2018

Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz

Dissertations, Theses, and Capstone Projects

In this thesis I show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into a ligand-gated or counterion-gated conformational molecular switch. To demonstrate this I first modified the designed helical bundle hemoprotein H4 using simple molecular modeling, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. Due to the high surface charge density, ligand binding to this protein is allosterically activated by low concentrations of divalent cations and the polyamine spermine. …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu May 2018

Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu

Dissertations, Theses, and Capstone Projects

5' m7GpppN cap and the 3' poly adenosine (A) tail of eukaryotic mRNAs are key elements for recruiting translation initiation machinery in canonical translation initiation. Unlike host mRNAs, many viruses lack these elements and yet they are translated efficiently. Plant viruses, in particular, have complex structures within their untranslated regions (UTR) that allow them to bypass some cellular translation control steps. In Maize necrotic streak virus (MNeSV) 3' UTR, an I-Shaped RNA Structure (ISS) has been reported to mediate the virus translation initiation progress. 3’ ISS binding with eIF4F has been shown to facilitate translation. 5’ -3’ kissing …


Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang Sep 2017

Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang

Dissertations, Theses, and Capstone Projects

The Adipocyte Fatty Acid-Binding Protein (AFABP) is mainly expressed in fat cells. It can bind fatty acids and other lipophilic substances such as eicosanoids and retinoids. The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor protein that requires ligand binding to regulate the specific gene transcription. PPARγ is expressed at extremely high levels in adipose tissue, macrophages, and the large intestine, where it controls lipid adipogenesis and energy conversion. Moreover, it has been found that AFABP and PPARγ can form a complex in vivo. It is proposed that AFABP carries the ligand and enters into the nucleus where it …


Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal Feb 2017

Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal

Dissertations, Theses, and Capstone Projects

The CLC family of membrane proteins is a ubiquitously expressed class of proton and usually voltage-activated chloride transporters involved in a myriad of physiological functions. Crystallographic structures identify up to three chloride binding sites: external, central and intracellular located in the inner half of the trans-membrane domain. The CLC proteins, except for the kidney isoforms, are gated by the extracellular side-facing gating Glutamate (Ex, E148 in CLC-ec1, the E. coli exchanger), which is thought to undergo a conformational change upon protonation.

To sort out how the thermodynamic paths to H+ coupled Cl¯ binding and conformational change in CLC-ec1 at the …


Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan Sep 2016

Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan

Dissertations, Theses, and Capstone Projects

In nature, peptide toxins are an abundant resource, produced both by marine and terrestrial organisms. A major target of these peptide toxins is the group of the highly important voltage-gated ion channels. Due to their high specificity and affinity, peptide toxins have been used for over a decade in discovery and characterization of voltage-gated ion channels. Although peptide toxins have been extensively characterized structurally, the structural characterization of eukaryotic voltage-gated sodium channels has seen much less progress, due to their large size and high hydrophobicity. Voltage-gated sodium channels play crucial roles in many physiological processes, and when these processes are …


Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas Jun 2016

Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas

Dissertations, Theses, and Capstone Projects

Newly transcribed precursor messenger RNA (pre-mRNA) molecules contain coding sequences (exons) interspersed with non-coding intervening sequences (introns). These introns must be removed in order to generate a continuous coding sequence prior to translation of the message into protein. The mechanism through which these introns are removed is known as pre-mRNA splicing, a two-step reaction catalyzed be a large macromolecular machine, the spliceosome, located in the nucleus of eukaryotic cells. The spliceosome is a protein-directed ribozyme composed of small nuclear RNAs (snRNA) and hundreds of proteins that assemble in a very dynamic process. One of these snRNAs, the U2 snRNA, is …


The Interaction Between Eukaryotic Translation Initiation Factor Eif4g And 3’ Cap Independent Translation Element Of Barley Yellow Dwarf Virus Is Affected By Multiple Initiation Factors, Pei Zhao Feb 2016

The Interaction Between Eukaryotic Translation Initiation Factor Eif4g And 3’ Cap Independent Translation Element Of Barley Yellow Dwarf Virus Is Affected By Multiple Initiation Factors, Pei Zhao

Dissertations, Theses, and Capstone Projects

Barley Yellow Dwarf Virus (BYDV) lacks a 5’ (7-methyl guanosine) cap as well as a 3’poly A tail. Like many plant viruses, BYDV contains a cap independent translation element (CITE) in the 3’ untranslated region of the viral mRNA. BTE (Barley Yellow Dwarf Virus like cap-independent translation element) is one of the well characterized CITEs. BTE mediated translation primarily depends on eukaryotic initiation factor eIF4G. BTE binds to eIF4G; however, the details of BTE initiated translation are still unclear. Three eIF4G deletion mutants with different domain organization were used to investigate BTE interaction with eIF4G: eIF4G601-1196 is the eIF4G fragment …


Design And Optimization Of A De Novo Protein Charge Separation Dyad, Andrew C. Mutter Oct 2014

Design And Optimization Of A De Novo Protein Charge Separation Dyad, Andrew C. Mutter

Dissertations, Theses, and Capstone Projects

The ever-increasing demand for cheap, plentiful energy to fuel the needs of a growing population requires research into alternative clean energy. Solar irradiation has the potential to power the planet many times over; the challenge is efficient capture and conversion of this energy source. Nature has already solved this problem with photosynthesis, which harvests solar irradiation converting it to stored chemical energy and is the source of the energy for life. The goal of my dissertation is to use de novo designed protein to mimic the charge separation system in photosynthesis. A stable protein scaffold will be designed and used …


Recruitment Of The Ribosomal 40s Subunit To The 3'Untranslated Region Of A Viral Mrna, Via The Eif4 Complex, Facilitates Cap-Independent Translation, Sohani Das Sharma Jun 2014

Recruitment Of The Ribosomal 40s Subunit To The 3'Untranslated Region Of A Viral Mrna, Via The Eif4 Complex, Facilitates Cap-Independent Translation, Sohani Das Sharma

Dissertations, Theses, and Capstone Projects

Translation of uncapped plant viral RNAs can be facilitated by either an internal ribosomal entry site (IRES) in the 5' untranslated region (UTR) or a cap-independent translation element (CITE) in the 3' UTR. Barley yellow dwarf virus (BYDV) mRNA, which lacks both cap and poly(A) tail, has a translation element (3'BTE) in its 3' UTR that is essential for efficient translation initiation at the 5'-proximal AUG. This mechanism requires binding of the eukaryotic initiation factor 4G (eIF4G) subunit of the heterodimer eIF4F to the 3'BTE and base pairing between the 3'BTE and the 5' UTR. Here we investigate how this …


Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu Feb 2014

Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu

Dissertations, Theses, and Capstone Projects

The splicing of precursor messenger (pre-m) RNA, during which noncoding intervening sequences are excised and flanking coding regions ligated, is an integral reaction of gene expression. In eukaryotes, it is carried out by a dynamic RNA-protein complex called the spliceosome, in which five small nuclear (sn) RNA components are actively involved in recognition and chemical aspects of the process. A complex formed between U2 and U6 snRNAs is implicated in the chemistry of pre-mRNA splicing. The catalytic activity of the U2-U6 snRNA complex is dependent on the presence of Mg2+ ions, and the complex has been shown to have several …