Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry

Method Development For Enhancing Sensitivity Of Dynamic Nuclear Polarization Nuclear Magnetic Resonance Spectroscopy For Structural Studies Of Pkc-Drug Interactions, Patrick Terrence Judge Aug 2021

Method Development For Enhancing Sensitivity Of Dynamic Nuclear Polarization Nuclear Magnetic Resonance Spectroscopy For Structural Studies Of Pkc-Drug Interactions, Patrick Terrence Judge

Arts & Sciences Electronic Theses and Dissertations

To perform the most relevant structural studies on biological systems, experiments need to be carried out when the target proteins are in their endogenous cellular environment. Nuclear magnetic resonance (NMR) is well-suited to probe the structure and dynamics of a wide variety of systems, including biologically relevant proteins. However, NMR suffers from an inherent lack of sensitivity. Dynamic nuclear polarization (DNP) NMR is a powerful technique that is used to enhance NMR sensitivity by transferring the greater polarization of exogenously doped electron spins to nuclear spins of interest though the use of a high-power microwave source. Solid effect radicals offer …


Mass Spectrometry-Based Strategies In Protein Higher Order Structure Analysis: Fundamentals And Applications In Protein-Ligand Interactions, Xiaoran Liu Jan 2021

Mass Spectrometry-Based Strategies In Protein Higher Order Structure Analysis: Fundamentals And Applications In Protein-Ligand Interactions, Xiaoran Liu

Arts & Sciences Electronic Theses and Dissertations

Protein ligand interaction is a fundamental question in biology and biochemistry, and many approaches including X-ray crystallography, nuclear magnetic resonance, cryogenic electron microscopy, mass spectroscopy (MS), infrared spectroscopy, circular dichroism, fluorescence spectroscopy and many others have been applied to address this question. Among these techniques, mass spectroscopy has the advantage of high throughput, low sample amount requirement, and mid-to-high spatial resolution. One of the MS-based approaches is protein footprinting, which utilizes labeling reagents to map the solvent accessible surface of the protein of interest thus deliver structural information. Irreversible labeling is represented by covalent labeling and radical labeling, in which …


Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang Aug 2020

Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang

Arts & Sciences Electronic Theses and Dissertations

Proteins, one of the most fundamental biomolecules, adopt unique higher order structures (HOS) to enable diverse biological functions. Deciphering protein HOS is crucial to gain deeper insights of their working mechanisms and to develop biotherapeutics. Mass spectrometry (MS)-based approaches evolved rapidly in the past 30 years and are now playing critical roles in protein HOS characterization. One of those approaches is MS-based footprinting whose principle is to map the solvent accessible surface area (SASA) to deliver structural information. Protein footprinting can be achieved by reversible labeling, e.g., hydrogen-deuterium exchange (HDX), and by irreversible labeling using radical-based reagents or other targeted …


Sideromycin Pathway Elucidation: Insights Into Salmycin Biosynthesis, Transport Paradigms, And Drug Release, Gerry Sann Macaraeg Rivera Dec 2019

Sideromycin Pathway Elucidation: Insights Into Salmycin Biosynthesis, Transport Paradigms, And Drug Release, Gerry Sann Macaraeg Rivera

Arts & Sciences Electronic Theses and Dissertations

Antibiotic resistance is an increasing threat in today’s society. In order to overcome resistant bacteria, it is necessary to discover new drugs with novel mechanisms of action. This work focuses on the sideromycin pathway, encompassing the biosynthetic production, mechanism of entry and hydrolysis-mediated drug release. Sideromycins are an interesting approach to combat the rise of antibiotic resistance since they provide a different avenue that overcomes problems that arise when entering the cell. The dissertation is separated into distinct sections dealing with the various areas of interest in the sideromycin pathway, particularly for the sideromycin, salmycin, produced by Streptomyces violaceus. The …


Fast-Forward Protein Folding And Design: Development, Analysis, And Applications Of The Fast Sampling Algorithm, Maxwell Isaac Zimmerman Aug 2019

Fast-Forward Protein Folding And Design: Development, Analysis, And Applications Of The Fast Sampling Algorithm, Maxwell Isaac Zimmerman

Arts & Sciences Electronic Theses and Dissertations

Molecular dynamics simulations are a powerful tool to explore conformational landscapes, though limitations in computational hardware commonly thwart observation of biologically relevant events. Since highly specialized or massively parallelized distributed supercomputers are not available to most scientists, there is a strong need for methods that can access long timescale phenomena using commodity hardware. In this thesis, I present the goal-oriented sampling method, Fluctuation Amplification of Specific Traits (FAST), that takes advantage of Markov state models (MSMs) to adaptively explore conformational space using equilibrium-based simulations. This method follows gradients in conformational space to quickly explore relevant conformational transitions with orders of …


Electron Decoupling With Chirped Microwave Pulses For Magic Angle Spinning Dynamic Nuclear Polarization Nuclear Magnetic Resonance Spectroscopy, Edward Paul Saliba Aug 2019

Electron Decoupling With Chirped Microwave Pulses For Magic Angle Spinning Dynamic Nuclear Polarization Nuclear Magnetic Resonance Spectroscopy, Edward Paul Saliba

Arts & Sciences Electronic Theses and Dissertations

Dynamic nuclear polarization (DNP) is a method of generating hyperpolarization of nuclear spins for nuclear magnetic resonance (NMR) spectroscopy. Coherent, time domain techniques make the possibility of DNP directly to spins of interest at room temperature and higher feasible in magic angle spinning (MAS) NMR, allowing for optimal experimental repetition times to be limited by the T_1 of the electron, rather than a much longer T_1DNP, with excellent resolution. The strong hyperfine couplings that make such direct DNP transfers possible, however, can lead to short nuclear relaxation times that result in broadening of nuclear resonances and reduce sensitivity. This dissertation …


Building On Nature: Spectroscopic Studies Of Photosynthesis-Inspired Pigments, Fused Light Harvesting Proteins, And Bacterial Reaction Center Mutants, Kaitlyn Faries Aug 2018

Building On Nature: Spectroscopic Studies Of Photosynthesis-Inspired Pigments, Fused Light Harvesting Proteins, And Bacterial Reaction Center Mutants, Kaitlyn Faries

Arts & Sciences Electronic Theses and Dissertations

Photosynthesis is the dominant form of solar energy conversion on the planet, making it critical to understand the fundamentals of the process in order to effectively mimic and improve upon it for human energy needs. The initial stages of photosynthesis include light harvesting and chemical conversion of that harvested energy via electron transport, with both of these stages relying on pigments (or chromophores) such as chlorophyll and specific protein architectures for the processes. In this work, the fundamental underpinnings of photosynthetic light harvesting and electron transport are explored via spectroscopy of various photosynthetic systems with altered natural pigments and proteins. …


Effects Of Nucleosome Structure On Dna Photoproduct Formation And Deamination, Kesai Wang Aug 2017

Effects Of Nucleosome Structure On Dna Photoproduct Formation And Deamination, Kesai Wang

Arts & Sciences Electronic Theses and Dissertations

Cyclobutane pyrimidine dimers (CPDs) are DNA photoproducts linked to skin cancer, whose mutagenicity depends in part on their frequency of formation and deamination. Nucleosomes modulate CPD formation, favoring outside facing sites, and disfavoring inward facing sites. A similar pattern of CPD formation in protein-free DNA loops suggest that DNA bending causes the modulation of photoproduct formation in nucleosomes. To systematically study the cause and effect of nucleosome structure on CPD formation and deamination, we had developed a circular permutation synthesis strategy for positioning a target sequence at different superhelix locations (SHLs) across a nucleosome in which the DNA has been …


Mass Spectrometry-Based Structural Proteomics: Methodology And Application Of Fast Photochemical Oxidation Of Proteins (Fpop), Ben Niu Aug 2017

Mass Spectrometry-Based Structural Proteomics: Methodology And Application Of Fast Photochemical Oxidation Of Proteins (Fpop), Ben Niu

Arts & Sciences Electronic Theses and Dissertations

The dissertation will be solely focused on using mass spectrometry to characterize protein high order structures (HOS), it emphasizes the use of hydroxyl radical footprinting (FPOP) coupled to bottom-up MS approach. A detailed background information about FPOP, and the corresponding method developments as well as applications will be covered.

The first chapter will be a comprehensive review regarding the FPOP. Following this, chapter 2, 3, and 4 will be focused on the method developments. Chapter 2 describes an isotope dilution GC-MS method to quantitate OH radicals in FPOP; chapter 3 describes the incorporation of Leu-enkephalin as reporter peptide for a …


Mapping Analyte-Signal Relations In Lc-Ms Based Untargeted Metabolomics, Nathaniel Guy Mahieu May 2017

Mapping Analyte-Signal Relations In Lc-Ms Based Untargeted Metabolomics, Nathaniel Guy Mahieu

Arts & Sciences Electronic Theses and Dissertations

The goal of untargeted metabolomics is to profile metabolism by measuring as many metabolites as possible. A major advantage of the untargeted approach is the detection of unexpected or unknown metabolites. These metabolites have chemical structures, metabolic pathways, or cellular functions that have not been previously described. Hence, they represent exciting opportunities to advance our understanding of biology. This beneficial approach, however, also adds considerable complexity to the analysis of metabolomics data - an individual signal cannot be readily identified as a unique metabolite. As such, a major challenge faced by the untargeted metabolomic workflow is extracting the analyte content …