Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Tennessee, Knoxville

Articles 1 - 30 of 107

Full-Text Articles in Biochemistry

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou Dec 2023

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou

Doctoral Dissertations

Candida albicans phosphatidylserine (PS) synthase, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis due to its importance in virulence, absence in the host and conservation among fungal pathogens. This dissertation is focused on the identification of inhibitors for this membrane enzyme. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif present within Cho1, and here we revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1. For serine, we have predicted a …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Characterization Of Arabidopsis Eukaryotic Translation Initiation Factor 2Α (Eif2Α) Mutants, Mark Edens May 2023

Characterization Of Arabidopsis Eukaryotic Translation Initiation Factor 2Α (Eif2Α) Mutants, Mark Edens

Masters Theses

Plants are stationary organisms that are charged with overcoming a multitude of biotic and abiotic stresses. The eukaryotic translation initiation factor 2 (eIF2) is responsible for charging the P-site of the forming 80S ribosome with the initiator methionyl-tRNA. Thus, eIF2 is a protein of utmost consequence in the growth and development of organisms. The eIF2 protein is also a mediator of global translational regulation in the eukaryotic integrated stress response (ISR), where the α-subunit is phosphorylated by protein kinases, such as the kinase GCN2. Here, five eIF2α allele mutants in Arabidopsis were found to be deleterious to plant growth, development, …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Investigating The Role Of Dullard And Tmem-188 In Lipid Droplet Biogenesis In Mammalian Cells, Mia Kaitlin Buono May 2022

Investigating The Role Of Dullard And Tmem-188 In Lipid Droplet Biogenesis In Mammalian Cells, Mia Kaitlin Buono

Chancellor’s Honors Program Projects

No abstract provided.


Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee May 2022

Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee

Chancellor’s Honors Program Projects

No abstract provided.


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Influence Of Physical Variability Of Highly Weathered Sedimentary Rock On Nitrate In Area 3 Of The Enigma Field Research Site At Y-12, Erin Kelly Dec 2021

Influence Of Physical Variability Of Highly Weathered Sedimentary Rock On Nitrate In Area 3 Of The Enigma Field Research Site At Y-12, Erin Kelly

Masters Theses

Uranium processing and waste storage in unlined waste ponds leached contaminants into the groundwater at Y-12, Oak Ridge, Tennessee, from the 1950s to 1980s. Groundwater wells near the S-3 ponds have had the highest nitrate concentrations of groundwater anywhere in the world (>10,000 mg/L). For reference, the maximum contaminant level for nitrate in drinking water set by the U.S. Environmental Protection Agency is 10 mg/L. Since 2012, the ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) group has been characterizing, monitoring, and conducting field experiments to understand the interactions between contaminants, microbes, and the subsurface. The goals …


The Hidden Life Of Tropical Roots: Functional Root Traits And Their Response To Climatic Disturbances, Daniela Yaffar May 2021

The Hidden Life Of Tropical Roots: Functional Root Traits And Their Response To Climatic Disturbances, Daniela Yaffar

Doctoral Dissertations

Roots play a critical role in plant nutrition, and terrestrial carbon cycling. However, they are often understudied compared to their aboveground counterparts; especially in the tropics, where more carbon is cycled than in any other ecosystem. Some tropical forests, like in Puerto Rico, are more represented in scientific studies than others. However, this information is sparse, complicating the interpretation of root trait patterns. Trees in Puerto Rico have adapted mechanisms for withstanding hurricane disturbances, including in their roots. Additionally, as many tropical forests, some in Puerto Rico have low available phosphorus (P); thus, trees rely on root traits to enhance …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Computer Simulations Of Biological Systems: From Protein Dynamics To Drug Discovery, Rupesh Agarwal Dec 2020

Computer Simulations Of Biological Systems: From Protein Dynamics To Drug Discovery, Rupesh Agarwal

Doctoral Dissertations

Computational biophysics methods such as molecular dynamics (MD) simulations are often used in combination with experimental techniques like neutron scattering, NMR, and FTIR to explore protein conformational landscapes. With the improvements in experimental techniques, there is also a need to continually optimize the MD forcefield parameters to make precise predictions that match experimental results. To complement many of these experiments, an accurate model of deuteration is frequently required, but has been elusive. In our work, we developed a novel method to capture isotope effects in classical MD simulations by re-parameterization of the bonded terms of the CHARMM forcefield using quantum …


Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller Dec 2020

Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller

Doctoral Dissertations

Understanding how small-molecules, such as drugs, interact with bacterial membranes can quickly unravel into much more perplexing questions. No two bacterial species are alike, especially when comparing their membrane compositions which can even be altered by incorporating fatty acids from their surrounding environment into their lipid-membrane composition. To further complicate the comparison, discrete alterations in small-molecule structures can result in vastly different membrane-interaction outcomes, giving rise to the need for more "label-free" studies when analyzing drug mechanisms. The work presented in this dissertation highlights the benefits to using nonlinear spectroscopy and microscopy techniques for probing small-molecule interactions in living bacteria. …


Crosstalk Between Rho-Family Gtpases At The Division Site During Cytokinesis, Emma Nicole Koory May 2020

Crosstalk Between Rho-Family Gtpases At The Division Site During Cytokinesis, Emma Nicole Koory

Chancellor’s Honors Program Projects

No abstract provided.


Characterization Of Tmx Transmembrane Protein In Bacillus Subtilis And Its Effects On Antibiotic Resistance, Membrane Permeability, And Membrane Fluidity, Henna Zaver May 2020

Characterization Of Tmx Transmembrane Protein In Bacillus Subtilis And Its Effects On Antibiotic Resistance, Membrane Permeability, And Membrane Fluidity, Henna Zaver

Chancellor’s Honors Program Projects

No abstract provided.


Cell Separation Delay And Membrane Trafficking Defects In Cdc42 Gap Mutants, Haylee Young Dec 2019

Cell Separation Delay And Membrane Trafficking Defects In Cdc42 Gap Mutants, Haylee Young

Chancellor’s Honors Program Projects

No abstract provided.


Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes Dec 2019

Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes

Chancellor’s Honors Program Projects

No abstract provided.


Effect Of Turmeric On The Promoter Activity Of The Cyp6a8 Gene Of Drosophila Melanogaster, Alexa Stroh May 2019

Effect Of Turmeric On The Promoter Activity Of The Cyp6a8 Gene Of Drosophila Melanogaster, Alexa Stroh

Chancellor’s Honors Program Projects

No abstract provided.


Design And Development Of A Quartz Crystal Microbalance Immunosensor For Exosomes, Wesley Cox May 2018

Design And Development Of A Quartz Crystal Microbalance Immunosensor For Exosomes, Wesley Cox

Chancellor’s Honors Program Projects

No abstract provided.


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins Aug 2017

Detection, Diversity, And Evolution Of Fungal Nitric Oxide Reductases (P450nor), Steven Adam Higgins

Doctoral Dissertations

Nitrous oxide (N2O) is a gas responsible for significant ozone layer depletion and contributes to greenhouse effects in Earth’s atmosphere. N2O is primarily generated by denitrification, whereby nitrate (NO3-) or nitrite (NO2-) is converted to gaseous N2O or N2. Teragram quantities of N2O are emitted annually from agricultural soils treated with nitrogenous fertilizers due to the activity of soil microbiota. Although bacteria and fungi harbor genes permitting denitrification, fungi lack NosZ, an enzyme responsible for reducing N2O into inert N2 gas. Historically, scientists have linked fungi …


A Study On The Interactions Of Trehalose With Model Folate Compounds, Carolyn R Ware May 2017

A Study On The Interactions Of Trehalose With Model Folate Compounds, Carolyn R Ware

Chancellor’s Honors Program Projects

No abstract provided.


The Crowding Effects Of Rmlc On R67 And Chromosomal Dihydrofolate Reductase Enzymes, Michael A. Craig May 2017

The Crowding Effects Of Rmlc On R67 And Chromosomal Dihydrofolate Reductase Enzymes, Michael A. Craig

Chancellor’s Honors Program Projects

No abstract provided.


Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud May 2017

Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud

Chancellor’s Honors Program Projects

No abstract provided.


Comparative Chemical Characterization Of Lunasin-Enriched Preparations And Modifications Of The Inflammasomes In Vitro, Samuel James Price May 2017

Comparative Chemical Characterization Of Lunasin-Enriched Preparations And Modifications Of The Inflammasomes In Vitro, Samuel James Price

Masters Theses

Soybean (Glycine max) is one of the most cultivated crops in the world providing the population with large amounts of protein and oil. In addition to its nutritional composition, soybean also contains biologically active compounds with potential health-promoting properties. The presence of these bioactives may be responsible for the lower incidence of chronic diseases in populations that consume a significant portion of soybeans in their diet. One group of soybeanderived bioactives are bioactive peptides and proteins including lunasin, Bowman-Birk inhibitor (BBI) and Kunitz-type trypsin inhibitor (KTI). The overall objective of this research was to develop a method of …


Towards Understanding Osmolyte Effects On Folate(S) And Dihydrofolate Reductase Proteins, Purva Prashant Bhojane Dec 2016

Towards Understanding Osmolyte Effects On Folate(S) And Dihydrofolate Reductase Proteins, Purva Prashant Bhojane

Doctoral Dissertations

Osmolytes are small molecules that alter water activity and probe role of water in biological processes. Osmotic stress approach explored the role of water in ligand binding to dihydrofolate reductase (DHFR). DHFR catalyzes NADPH dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which is essential for the synthesis of DNA, amino acids and other metabolic intermediates. R67 DHFR is a plasmid-encoded DHFR that confers resistance against trimethoprim, which is a potent inhibitor of E.coli chromosomal DHFR.

Osmolytes addition decreases the affinity of the substrate towards both the DHFRs. Weak preferential interactions between the osmolytes and DHF impede substrate binding to …


Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li Dec 2016

Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li

Doctoral Dissertations

Photosystem I (PSI) forms trimeric complexes in most characterized cyanobacteria. We had reported the tetrameric form of PSI in the unicellular cyanobacterium, Chroococcidiopsis sp. TS-821 (TS-821). Using Cryo-EM, a 3D model of the PSI tetramer structure at 11.5 [Angstrom] resolution was obtained and a 2D map within the membrane plane of at 6.1 [Angstrom]. In contrast to the three-fold symmetry in trimeric PSI crystal structure from T. elongatus, two different inter-monomer interactions involving PsaLs are found in the PSI tetramer. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria. Additionally, this tetrameric …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Effect Of Varying Rumen Degradable And Undegradable Protein On Milk Production And Nitrogen Efficiency In Lactating Dairy Cows Under Summer Conditions, Jeffrey D. Kaufman Dec 2016

Effect Of Varying Rumen Degradable And Undegradable Protein On Milk Production And Nitrogen Efficiency In Lactating Dairy Cows Under Summer Conditions, Jeffrey D. Kaufman

Masters Theses

The objective is to determine the effect of reducing nitrogen input through feeding low rumen degradable protein (RDP) and rumen undegradable protein (RUP) proportions on milk production, nitrogen efficiency and metabolism in heat-stressed cows. Forty-eight mid-lactating, Holstein cows were assigned to treatments using a randomized block design in a 2x2 factorial arrangement of treatments (n = 12/treatment). Treatments included two levels of RDP (10 and 8%) and two levels of RUP (8 and 6%). From d 1 to 21, a common diet (10% RDP-8% RUP) was fed to cows followed with their respective treatment diets fed from d 22 to …


Switchgrass Extractives Have Potential As A Value-Added Antimicrobial Against Plant Pathogens And Foodborne Pathogens, Alexander Ian Bruce Dec 2016

Switchgrass Extractives Have Potential As A Value-Added Antimicrobial Against Plant Pathogens And Foodborne Pathogens, Alexander Ian Bruce

Masters Theses

Panicum virgatum (switchgrass), a perennial grass native to North America, is a leading biomass feedstock candidate for the manufacture of cellulosic ethanol. Switchgrass is considered a viable option for biofuel production due to its cheap production cost and ability to grow on marginal land. Biofuel derived from switchgrass has been shown to be very energy efficient, producing 540% more renewable energy versus nonrenewable energy expended. Switchgrass-derived biofuel is also estimated to have greenhouse gas emissions that are 94% lower than emissions from gasoline (Schmer et al 2008). Biofuels are created through biochemical processes that utilize various enzymes and microorganisms for …