Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Kentucky

Calcium Signaling

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun Jan 2019

Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun

Theses and Dissertations--Chemistry

Ca2+ is an important messenger that affects almost all cellular processes. Ca2+ signaling involves events that happen at various time-scales such as Ca2+ diffusion, trans-membrane Ca2+ transport and Ca2+-mediated protein-protein interactions. In this work, we utilized multi-scale computational methods to quantitatively characterize Ca2+ diffusion efficiency, Ca2+ binding thermodynamics and molecular bases of Ca2+-dependent protein-protein interaction. Specifically, we studied 1) the electrokinetic transport of Ca2+ in confined sub-µm geometry with complicated surfacial properties. We characterized the effective diffusion constant of Ca2+ in a cell-like environment, which helps to understand …


The Disordered Regulation Of Calcineurin: How Calmodulin-Induced Regulatory Domain Structural Changes Lead To The Activation Of Calcineurin, Victoria B. Dunlap Jan 2013

The Disordered Regulation Of Calcineurin: How Calmodulin-Induced Regulatory Domain Structural Changes Lead To The Activation Of Calcineurin, Victoria B. Dunlap

Theses and Dissertations--Molecular and Cellular Biochemistry

Calcineurin (CaN) is a highly regulated Ser/Thr protein phosphatase that plays critical roles in learning and memory, cardiac development and function, and immune system activation. Alterations in CaN regulation contribute to multiple disease states such as Down syndrome, cardiac hypertrophy, Alzheimer’s disease, and autoimmune disease. In addition, CaN is the target of the immunosuppressant drugs FK506 and cyclosporin A. Despite its importance, CaN regulation is not well understood on a molecular level. Full CaN activation requires binding of calcium-loaded calmodulin (CaM), however little is known about how CaM binding releases CaN’s autoinhibitory domain from the active site. Previous work has …