Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Kentucky

Calcineurin

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Calcineurin: From Activation To Inhibition, Erik C. Cook Jan 2016

Calcineurin: From Activation To Inhibition, Erik C. Cook

Theses and Dissertations--Molecular and Cellular Biochemistry

Calcineurin is a Ser/Thr phosphatase whose function is implicated in critical physiological processes such as immune system activation, fetal heart development, and long-term depression in neurons. Calcineurin has been implicated in the progression of Alzheimer’s disease and cardiac hypertrophy. It is not well understood how calcineurin is activated on a molecular level by Ca2+ and its activating protein calmodulin. Previous data from our lab show that calmodulin interaction induces the folding of the intrinsically disordered regulatory domain of calcineurin in two discrete and distant regions into α-helical conformations and that this folding is critical for complete activation of calcineurin. …


The Disordered Regulation Of Calcineurin: How Calmodulin-Induced Regulatory Domain Structural Changes Lead To The Activation Of Calcineurin, Victoria B. Dunlap Jan 2013

The Disordered Regulation Of Calcineurin: How Calmodulin-Induced Regulatory Domain Structural Changes Lead To The Activation Of Calcineurin, Victoria B. Dunlap

Theses and Dissertations--Molecular and Cellular Biochemistry

Calcineurin (CaN) is a highly regulated Ser/Thr protein phosphatase that plays critical roles in learning and memory, cardiac development and function, and immune system activation. Alterations in CaN regulation contribute to multiple disease states such as Down syndrome, cardiac hypertrophy, Alzheimer’s disease, and autoimmune disease. In addition, CaN is the target of the immunosuppressant drugs FK506 and cyclosporin A. Despite its importance, CaN regulation is not well understood on a molecular level. Full CaN activation requires binding of calcium-loaded calmodulin (CaM), however little is known about how CaM binding releases CaN’s autoinhibitory domain from the active site. Previous work has …