Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Arkansas, Fayetteville

Glutamic acid

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr May 2020

Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins constitute about 30% of the proteins in a mammalian cell and are involved in major biological processes. The dynamic properties of membrane proteins and the ionization states of particular side chains are important for biological function. The biophysical properties of membrane proteins nevertheless can be difficult to decode, particularly for glutamic acid in the lipid environment of cell membranes. To study the ionization of glutamic acid in transmembrane peptides, guest glutamic acid residues were substituted into the well-defined model helix of GWALP23 (acetyl-GGAL4WLALALALALAL16ALWLAGA-amide). These guest residues were placed at position L16 or L4 and specific 2H-labeled alanine residues …


Influence Of Ph And Acidic Side Chain Charges On The Behavior Of Designed Model Peptides In Lipid Bilayer Membranes, Venkatesan Rajagopalan Dec 2016

Influence Of Ph And Acidic Side Chain Charges On The Behavior Of Designed Model Peptides In Lipid Bilayer Membranes, Venkatesan Rajagopalan

Graduate Theses and Dissertations

The molecular properties of transmembrane proteins and their interactions with lipids regulate biological function. Of particular interest are interfacial aromatic residues and charged residues in the core helix whose functions range from stabilizing the native structure to regulating ion channels. This dissertation addresses the pH dependence and influence of potentially negatively charged tyrosine, glutamic acid or aspartic acid side chains. We have employed GWALP23 (acetyl-GGALW5LALALALALALALW19LAGA-amide) as favorable host peptide framework. We have substituted W5 with Tyr (Y5GWALP23) and Leu residues with Glu (L12E, L14E or L16E) or Asp (L14D or L16D), and have incorporated specific 2H-labeled alanine residues within the …