Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry

Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan May 2022

Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast Growth Factors (FGFs), including FGF-1 and FGF-2, are proteins that play a crucial role in cell proliferation, cell differentiation, cell migration, and tissue repair. FGF-1 and FGF-2 are useful in accelerating the healing process in the human body; however, these proteins are naturally thermally unstable, resulting in a relatively low half-life in vivo. 1,8 In efforts to improve the stability of this protein, FGF-1 and FGF-2 proteins are engineered by combining the amino acid sequences of the two proteins to form a heterodimer and obtain novel properties. These two FGF variants are chosen for their specific wound healing capabilities. …


Probing Of Carbohydrate-Protein Interactions Using Galactonoamidine Inhibitors, Jessica B. Pickens Dec 2019

Probing Of Carbohydrate-Protein Interactions Using Galactonoamidine Inhibitors, Jessica B. Pickens

Graduate Theses and Dissertations

Glycoside hydrolases are ubiquitous and one of the most catalytically proficient enzymes known, and thus understanding their mechanisms are crucial. Most research has focused on the interaction of the glycon of substrates and their inhibitors within the active site of glycoside hydrolases. The inhibitors employed to probe these interactions generally had small aglycons (i.e. a hydrogen atom, amidines, small aliphatic groups, or benzyl groups). Here, the interactions of the aglycon with glycoside hydrolases are examined by probing the active sites with a library of 25 galactonoamidines. The studies described in this dissertation aim to increase the understanding of stabilization of …


Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr Dec 2019

Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr

Graduate Theses and Dissertations

Protein targeting is a vital cellular function. The signal recognition particle (SRP) pathway is a universally conserved targeting system present in the cytosol and used to co-translationally target many proteins to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes. The chloroplast has a homologous SRP system which post-translationally targets light harvesting chlorophyll binding proteins (LHCPs) to the thylakoid membrane for integration. The chloroplast SRP (cpSRP) is a heterodimer with a 54 kDa subunit equivalent to SRP54 in the canonical pathway. In addition, cpSRP contains a novel 43 kDa subunit which is a unique and irreplaceable component. cpSRP43 …


Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari Dec 2019

Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari

Graduate Theses and Dissertations

Delivering effective and non-toxic doses of bioactive materials that can aid in activating tissue regeneration to wounded tissue has proven to be an enormous challenge. This study was designed to produce a potential therapeutic recombinant protein by fusing two collagen binding domains to basic fibroblast growth factors (bFGF) through a collagenase cleavage site linker, so it can release the bFGF in a wound site by the action of this enzyme. The novel fusion protein was expressed in Escherichia coli BL-21 (E. coli) using traditional flask shaker and fed-batch cultivation. Cell lysate was purified by FPLC using Immobilized metal affinity chromatography …


Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose Dec 2019

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose

Graduate Theses and Dissertations

Since aromatic and charged residues are often present in various locations of transmembrane helices of integral membrane proteins, their impacts on the molecular properties of transmembrane proteins and their interactions with lipids are of particular interest in many studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH dependence and influence of single and multiple “guest” histidine residues in the orientation and dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to H2/22), Trp to His (W5/19 to H5/19) and Leu to His …


Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom Dec 2019

Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom

Graduate Theses and Dissertations

The work presented in this dissertation explores the structural dynamics in the chloroplast signal recognition particle pathway. Findings include cpSRP shows scanning functionality similar to that in the cytosolic SRP with the ribosome. The intrinsically disordered C-terminal tail of the Albino3 protein has some transient secondary structure. Upon binding to cpSRP43 in solution, separate secondary structure formation was identified in the C-terminal tail of Albino3. Finally, to increase efficiency of analyzing fluorescence time traces for this work, a modular software was produced.


Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu May 2019

Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu

Graduate Theses and Dissertations

Ipomoeassin F is a flagship congener of a resin glycoside family that inhibits growth of many tumor cell lines with only single-digital nanomolar IC50 values. However, biological and pharmacological mechanisms of ipomoeassin F have been undefined. To facilitate exploration of the biological and pharmacological properties, we performed sophisticate SAR (Structure–activity relationship) studies of ipomoeassin F to understand its pharmacophore and structure properties so that we can design favorable probes for further biological investigation. By applying appropriate deviates that possess fluorescent groups and similar bio-activity, the target protein was found to be localized in endoplasmic reticulum (ER). Through biotin affinity pull …


Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel May 2016

Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are family of proteins that belong to a group of growth factors that are found in mammals and play an important role in angiogenesis, differentiation, organogenesis, and tissue repair. In summary, their main functionality is involved in cell division and proliferation. Because FGFs plays such a vital role in cell proliferation, they are mainly involved in the process of wound healing and injuries. FGF binds to its ligand, heparin—a heavily sulfated glycosaminoglycan. The binding of heparin to FGF occurs through electrostatic interactions, specifically between the negatively charged sulfate groups on heparin and positively charged residues such …