Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Neuroscience and Neurobiology

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 85

Full-Text Articles in Biochemistry

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover Feb 2023

Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover

Dissertations

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The AD brain is characterized by significant neuronal loss and accumulation of insoluble fibrillar amyloid-β protein (Aβ) plaques and tau protein neurofibrillary tangles in the brain. However, over the last decade, many studies have shown that the neurodegenerative effect of Aβ may in fact be caused by various soluble oligomeric forms as opposed to the insoluble fibrils. Furthermore, the data suggest that a pre-fibrillar aggregated form, termed protofibrils, mediates direct neurotoxicity, and triggers a robust neuroinflammatory response.

Antibodies targeting the various conformation of Aβ are important therapeutic agents to prevent the progression …


Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic Feb 2023

Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic

Doctoral Dissertations

Learning and memory formation at the cellular level involves decoding complex electrochemical signals between nerve cells, or neurons. Understanding these processes at the molecular level requires a comprehensive study of calcium-sensitive proteins that serve as signal mediators within cells. More specifically, the protein calcium/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of downstream cellular signaling events in the brain, playing an important role in long term memory formation. CaMKII is encoded in humans on four different genes: alpha, beta, gamma and delta. For added complexity, each of these gene products can be alternatively spliced and translated into multiple protein …


The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen Dec 2022

Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen

Theses & Dissertations

Cholesterol is essential for life. It is particularly important in the brain as it relies on de novo synthesis of cholesterol following the formation of the blood brain barrier (BBB). As such, disrupting sterol biosynthesis during neurodevelopment can have devastating outcomes. The most common post-lanosterol sterol biosynthesis disorder, Smith-Lemli-Opitz Syndrome, arises from a faulty DHCR7 enzyme. DHCR7 has also been shown to be inhibited by several psychotropic medications. Here we assess six beta-blockers and their effects on sterol biosynthesis in vitro. Two beta-blockers, metoprolol and nebivolol strongly inhibit DHCR7 in four separate in vitro models of both mouse and …


Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah Sep 2022

Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah

Dissertations, Theses, and Capstone Projects

Differentiation of oligodendrocytes from progenitor cells is a highly regulated process characterized by a series of molecular changes, resulting in nuclear and morphological features unique to the mature oligodendrocyte state. Heterochromatin formation starting at the nuclear periphery, as well as increased nuclear rigidity are characteristically observed. The nuclear periphery is characterized by the presence of the nuclear lamina and it has been implicated in higher-order genome organization in cells. Lamins are the protein components of the nuclear lamina, and their expression is dependent upon the cell differentiation stage of the cells. While Lamin B1 (LMNB1) expression is high in progenitors …


Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace Sep 2022

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is an age related neurodegenerative disease with pathology that includes amyloid plaques, neurofibrillary tangles and non-resolving neuroinflammation. Non-resolving neuroinflammation lasts the entire course of the disease and has deleterious effects and is often thought to accelerate AD pathology. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) have commonly been used as therapeutics to treat pain, inflammation and vascular. NSAIDs work by altering the cyclooxygenase (COX) mediated biosynthesis of prostaglandins which are lipid mediators that have many physiological functions, for example nociception, inflammation and vasodilation. Epidemiological studies support the notion that NSAIDs could be used to treat AD. Yet, clinical trials using …


Cortisol Receptor Sensitivity As A Risk Factor For Depression, Michela Michielli Jun 2022

Cortisol Receptor Sensitivity As A Risk Factor For Depression, Michela Michielli

Honors Theses

In 2020, the World Health Organization reported over 264 million people across the world were suffering from depression. Studies have demonstrated that one source of depression is a hormonal imbalance involved in the stress response. Cortisol is a stress hormone regulated by the Hypothalamic-Anterior-Pituitary (HPA) Axis. Its effects on the stress response and other metabolic activities in the body are exerted through the glucocorticoid and mineralocorticoid receptors (GR and MR respectively).

Our research has examined mutations known as single-nucleotide-polymorphisms (SNPs) relating to cortisol-receptor sensitivity and the behavior of cortisol in the body to investigate the link between cortisol activity and …


Expression And Purification Of The Bacterial Protein Curli Csga And Its Cross-Interactions With Amyloid-B, Leah Grace Cantrell Jun 2022

Expression And Purification Of The Bacterial Protein Curli Csga And Its Cross-Interactions With Amyloid-B, Leah Grace Cantrell

Honors Theses

One of the main causes of neurodegenerative diseases is aggregation of amyloid proteins that are toxic to the neurons. Proteins like amyloid-β (Aβ) and α-syneuclein (α-syn) form hallmark aggregate lesions that contribute to pathological processes in the brain in Alzheimer and Parkinson’s patients, respectively. Recent ground-breaking studies have suggested a link between the microbiota of the gut and neurodegenerative diseases, called the “gut-brain axis.” It has been long known that the protein, CsgA found in many enteric bacteria, forms amyloid fibers of its own called Curli. Curli fibrils are a structural component of bacterial colonies and maintain the integrity of …


Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa May 2022

Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa

Theses & Dissertations

Mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells) are the governors of innate immunity which is the body’s first line of defense against microbial pathogens. They act beneficial or detrimental. They are crucial for an effective non-specific immune response to invading pathogens by engulfing, destroying, then eliciting an adaptive specific immune response. Given their pivotal functions in the host immune defense, studying MP immune responses in disease is paramount important for understanding disease pathobiology and uncovering therapeutic strategies.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the driver of acute respiratory distress syndrome (ARDS) in coronavirus disease 2019 (COVID-19) amongst …


Vitamin D And Its In Vitro Therapeutic Action Mediated Through Vdr Rather Than Pdia3, Jaeden Pyburn May 2022

Vitamin D And Its In Vitro Therapeutic Action Mediated Through Vdr Rather Than Pdia3, Jaeden Pyburn

Undergraduate Honors Theses

Brain calcification is a common occurrence in the aging process, with >20% of individuals over the age of 65 showing hardened plaques in the basal ganglia. Loss of the vitamin D receptor (VDR) in transgenic mice leads to formation of calcified plaques in the basal ganglia and thalamus within the mice. Vitamin D signals through two known vitamin D responsive proteins, protein disulfide isomerase A3 (PDIA3) and VDR. In vitro, vitamin D has been demonstrated to suppress calcification in osteoblast-like cells. Here, we aim to elucidate which of either PDIA3 or VDR transduce vitamin D mediated suppression of calcification in …


Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant Feb 2022

Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant

Electronic Thesis and Dissertation Repository

Transfer RNAs (tRNAs) physically link the genetic code to an amino acid sequence, by recruiting amino acids to three-nucleotide codons in messenger RNAs. To ensure that the genetic code is translated as intended, tRNAs must be accurately aminoacylated and faithfully recognize codons in the ribosome during protein synthesis. Given the critical function of tRNAs, it has often been assumed that mutations in human tRNA genes would be either lethal to cells or not significantly impair tRNA function. My goal was to rigorously test this assumption in mammalian cell models, prompted by the recent discovery of unprecedented variation in human tRNA …


Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas Jan 2022

Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas

Dissertations and Theses

Erythropoietin (EPO) is a cytokine hormone known for initiating red blood cell proliferation by binding to its homodimer receptor (EPOR)2 in the bone marrow. Recent progress in neurobiology has shown that EPO also exerts robust neurotrophic and neuroprotective activity in the CNS. It is widely thought that EPO’s neurotrophic activity is centrally involved in its antidepressant and cognitive enhancing effects. However, EPO’s potent erythropoietic effects prevent it from being used in the clinic to treat psychiatric disorders. A chemically engineered non-erythropoietic derivative of EPO, carbamoylated EPO (CEPO), produces psychoactive effects without activating hematopoiesis. However, CEPO is expensive to produce and …


An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson Jan 2022

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson

Graduate Theses, Dissertations, and Problem Reports

Aging is an inevitable process that occurs as humans grow older. It is characterized by the chronological accumulation of cellular damage over time leading to functional decline as an organism grows older. Several processes are thought to contribute to the aging phenomenon, but one of the most prolific of these is the disruption of protein homeostasis (proteostasis). The collapse of proteostasis can lead to accelerated aging and the development of age-related diseases including devastating neurodegenerative diseases (NDs) like Alzheimer and Parkinson disease. Virtually all NDs are characterized by the buildup of proteins in and around neurons resulting in neuronal death …


Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal Jan 2022

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal

Theses and Dissertations--Chemistry

Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate. Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are non-excitable cells in the brain which do not …


Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras Jan 2022

Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras

Theses and Dissertations--Neuroscience

Diabetes is a complex metabolic disorder, of which high blood glucose concentration is the primary hallmark. Type I diabetes mellitus (T1DM) is characterized by the lack of insulin production, due to a poorly understood autoinflammatory cascade. In the words of historian Barnett “Diabetes may no longer be a death sentence, but for more and more people in the 21st century, it will become a life sentence”, making it the focal point of many research groups. It is estimated that around 20 million individuals worldwide live with T1DM.

Effects of long-term chronically elevated blood glucose are not only seen in micro/macro-vascular …


Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams Jan 2022

Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams

Theses and Dissertations--Physiology

Apolipoprotein E (APOE) is encoded by the APOE gene, present in humans as three main isoforms (E2, E3, and E4). E4 carriers face up to a 15-fold increased risk for developing late-onset Alzheimer’s disease (AD), while E2 carriers are protected. Understanding the risk conferred by E4 has been an extensive research focus for nearly three decades, but the exact mechanism has yet to be proven. Many studies have demonstrated attenuated roles of E4 in classical hallmarks of AD, notably amyloid processing and neurofibrillary formation, which normally present later in disease progression. How APOE influences hallmarks that present much earlier are …


Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar Dec 2021

Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar

Dissertations

Granulins (GRNs) are small, cysteine-rich modules produced from the proteolytic cleavage of the precursor protein called progranulin (PGRN). GRNs are present in the form of seven tandem repeats within the precursor and are known to be produced in the extracellular and in lysosomal environments. In physiology, PGRN and GRNs plays pleiotropic roles such as neuronal growth and differentiation, immunomodulation, wound healing. Recent studies have implicated pathological role for PGRN in Alzheimer disease (AD) and frontotemporal dementia (FTD) but specific mechanism(s) remains unclear. However, potential interactions between GRNs and Ab42 and TDP-43 seem like a plausible underlying mechanism. Studies presented here …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Ampa And Kainate Receptor-Potentiating Rna Aptamers, Janet L. Lynch May 2021

Ampa And Kainate Receptor-Potentiating Rna Aptamers, Janet L. Lynch

Legacy Theses & Dissertations (2009 - 2024)

Glutamate receptors act to bring about excitatory transmission in the central nervous system. The receptors are divided into two groups: ionotropic and metabotropic glutamate receptors. Ionotropic glutamate receptors are ion channels which are activated by an agonist such as glutamate or kainate. The main receptors in the ionotropic glutamate receptor family are the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors. In the central nervous system ionotropic glutamate receptors are found both pre- and postsynaptically. It has been found that most AMPA and NMDA receptors are postsynaptic receptors while the kainate receptors can be pre- or postsynaptic. Underactivity of these …


Semaphorin-Induced Plasticity In The Nervous System Of The Cricket, Gryllus Bimaculatus, Alicia G. Edwards Jan 2021

Semaphorin-Induced Plasticity In The Nervous System Of The Cricket, Gryllus Bimaculatus, Alicia G. Edwards

Honors Projects

The adult auditory system of the cricket, Gryllus bimaculatus, exhibits a rare example of neuronal plasticity. Upon deafferentation, we observe medial dendrites that normally respect the midline of the PTG in the central nervous system sprouting across the boundary and forming synaptic connections with the contralateral auditory afferents. The Horch Lab has investigated key molecular factors that might play a causal role in this paradigm. Specifically, the protein Sema1a.2 comes from a guidance molecule family and has a role in developmental neuronal plasticity in other organisms. In this study, I explored the role of Sema1a.2 in the neuronal plasticity of …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz Sep 2020

Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz

Electronic Thesis and Dissertation Repository

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease associated with protein misfolding and dysregulated cellular protein quality control mechanisms. Molecular chaperones, and heat shock proteins (Hsp), are key players in maintaining cellular protein quality control. DNAJC7 is an understudied cytosolic Hsp40 that works together with Hsp70 and Hsp90 to regulate proper protein folding or degradation. Of note, mutations in the gene encoding DNAJC7 were discovered to cause familial ALS. We asked whether ALS-associated mutations in DNAJC7 compromise its function as a chaperone, which may cause the toxic accumulation of misfolded proteins. This study attempts to uncover the functions of DNAJC7 …


Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger Aug 2020

Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger

Dissertations

The incidence of traumatic brain injury (TBI) among military personnel have been steadily increasing with modern conflicts. A recent RAND report estimated 320,000 service members, totaling 20% of deployed forces, suffer from TBI. However, of this population roughly 60% have not seen a medical professional specifically for TBI. Unlike the civilian population, the primary cause of TBI for active-duty military personnel is blast exposure. Blasts now account for over 70% of all US military casualties in operation Iraqi Freedom (OIF) and Operation enduring freedom (OEF) and are the major cause of TBI. Among many pathological mechanisms associated with blast TBI, …


Elevated Cochlear Adenosine Causes Hearing Loss Via Adora2b Signaling, Jeanne Manalo Aug 2020

Elevated Cochlear Adenosine Causes Hearing Loss Via Adora2b Signaling, Jeanne Manalo

Dissertations & Theses (Open Access)

Over 538 million people in the world have been diagnosed with hearing loss (HL). Current treatments for the most common type of HL, sensorineural HL, are limited to hearing aids and cochlear implants with no FDA-drugs available. The hearing process demands an abundance of ATP and HL is often attributed to a disruption in this metabolic energy currency. Patients who lack adenosine deaminase (ADA), the enzyme that irreversibly metabolizes adenosine, have high levels of adenosine that yield severe health problems, including HL; however, the pathogenic mechanisms behind HL and adenosine remain elusive. Our lab has found a HL phenotype in …


Investigation Of The Role Of Heparin-Binding Pocket In Amyloid Fibrils Formation Of Fgf-1, I Gusti Ayu Agung Septiari Jul 2020

Investigation Of The Role Of Heparin-Binding Pocket In Amyloid Fibrils Formation Of Fgf-1, I Gusti Ayu Agung Septiari

Graduate Theses and Dissertations

Human acidic fibroblast growth factor (aFGF/hFGF-1) is one of the promising molecules to be investigated to generate an in-depth understanding of the pathological mechanism of Alzheimer's disease (AD) neurodegenerative disorder characterized by the presence of amyloid fibrils. Some in vivo and human brain tissue studies proved the correlation of high-level expression of FGF-1-induced neuroinflammation and the occurrence of AD. The presence of amyloid fibrils as a hallmark of AD can be related to the generic property of the proteins to form amyloid fibrils; High level of FGF-1, in this case, may contribute to the formation of amyloid fibrils. As a …


The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman May 2020

The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman

Arts & Sciences Electronic Theses and Dissertations

The Toll/Interleukin-1 Receptor (TIR) domain is an evolutionarily ancient protein domain conserved from bacteria to eukaryotes, and is an essential signaling component of innate immunity pathways. In animal innate immunity, TIR domains have primarily been described for their scaffolding function in assembling protein complexes in host defense. In plant immunity, TIR domains are key components of the intracellular Nucleotide Binding Leucine rich repeat (NLR) immune receptors that confer resistance to pathogens. These NLR receptors trigger cell death and an immune response upon activation, but their mechanism has remained elusive. In bacteria, TIR domain proteins have been suggested to function as …


The Raphe-Hippocampal Tract And Its Age Differences: Diffusion Tensor Imaging And Probabilistic Tractography Study, Ashley Sekul May 2020

The Raphe-Hippocampal Tract And Its Age Differences: Diffusion Tensor Imaging And Probabilistic Tractography Study, Ashley Sekul

Honors Theses

The raphe-hippocampal tract links the raphe nuclei to the hippocampus and is responsible for the production of the neurotransmitter serotonin. The hippocampus is key in regulating emotional and stress responses. This study utilized diffusion tensor imaging which uses Functional Magnetic Resonance Imaging to provide scans of the brain for analyzing differences in the raphe-hippocampal tract as one ages. In this specific study, 491 samples were visually analyzed to gather data about the fractional anisotropy of the raphe nuclei in both male and female brains ranging from 6 to 85 years old. Through the ranking of images, some were discarded, and …


The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan May 2020

The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan

Honors Theses

Insulin-like growth factor-1 (IGF-1) is a neuroendocrine signaling hormone that plays an integral role in bone and tissue growth and development. Inhibition of this hormone is known to disrupt the chemistry of the brain, resulting in cognitive impairments such as those seen in many common neurodegenerative diseases. While much research has been conducted on neurons and their relation with IGF-1, the role of astrocytes still needs to be explored. Our research investigates how astrocytes are affected as a result of IGF-1 regulation. Preliminary studies in our laboratory established a connection between IGF-1 and glial fibrillary acidic protein (GFAP), and in …


A Study Of The Antioxidant Versus Pro-Oxidant Nature Of The Amyloid Beta Peptide And An Analysis Of The Natural Products, Isorhamnetin And Narignenin, As Antioxidants, Kaylee Holmes Apr 2020

A Study Of The Antioxidant Versus Pro-Oxidant Nature Of The Amyloid Beta Peptide And An Analysis Of The Natural Products, Isorhamnetin And Narignenin, As Antioxidants, Kaylee Holmes

Honors Theses

Alzheimer’s disease is a neurodegenerative disorder with no cure. Due to the widespread effects of this disease, abundant research efforts have gone towards finding a cure. The amyloid beta (Ab) peptide has been shown to be a potential cause of the disease due to destructive effects on tissues that it can have both by itself and through reactive oxygen species (ROS) generation. This study was performed in order to assess the structural properties of Ab42monomers, fibrils and oligomers, to assess the antioxidant versus pro-oxidant behavior of the Ab peptide, and to assess the antioxidant nature of the natural …