Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemistry

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Biochemistry

Genome Announcement For E Cluster Phage Tarkin, Katherine Cleary Apr 2023

Genome Announcement For E Cluster Phage Tarkin, Katherine Cleary

Chemistry & Biochemistry Student Scholarship

Katherine Cleary ’23
Major: Biochemistry
Faculty Mentor: Dr. Kathleen Cornely, Chemistry and Biochemistry


Purification And Kinetic Characterization Of Mutant R111v Human Cytosolic Malate Dehydrogenase, Jackson Demartino Mar 2023

Purification And Kinetic Characterization Of Mutant R111v Human Cytosolic Malate Dehydrogenase, Jackson Demartino

Chemistry & Biochemistry Student Scholarship

Metabolic profiling for a variety of cancerous cells indicate significant increases in the levels of glucose consumption. To support uncontrolled cell division, cancer cells also present an uncoupling of glycolysis from the citric acid cycle to promote glucose carbons to the synthesis of biomass, therefore, requiring a constant supply of NAD+. Recent studies indicate that cancer cells exhibit upregulated cytosolic malate dehydrogenase (MDH1) activity, which catalyzes the conversion of oxaloacetate to malate with the oxidation of NADH, generating NAD+. Given its increased activity, MDH1 may serve as a valuable target for treating cancer. Here we report …


Exploring Indicator Displacement Assays For Phosphate Detection In Seawater, Francis Radics Apr 2022

Exploring Indicator Displacement Assays For Phosphate Detection In Seawater, Francis Radics

Chemistry & Biochemistry Student Scholarship

Francis Radics ’22
Major: Biochemistry
Faculty Mentor: Dr. John Breen, Chemistry and Biochemistry

Indicator displacement assays are based on the optical signal modulation of a noncovalently bound indicator upon dissociation by an analyte species. Our work has focused on exploring the lower detection limits for luminescent displacement assays for inorganic phosphate in seawater using complex ions containing two di(2-picolyl)amine ligands (also called DPA or bis(2-pyridylmethyl)amine), each coordinating a zinc cation. Following the work of B.D. Smith and coworkers, we have prepared three ligands by covalently attaching two DPA moieties, 2,6-bis(chloromethyl) benzene, and 2,6-bis(chloromethyl)-4-methylphenol, and 1,2-phenylenedimethylamine, for assays with 6,7-dihydroxy-4-methanesulfonic acid …


Proline To Serine Mutation In The Active Site Loop Of Malate Dehydrogenase Alters Substrate Specificity, Olivia J. Schmitt Apr 2022

Proline To Serine Mutation In The Active Site Loop Of Malate Dehydrogenase Alters Substrate Specificity, Olivia J. Schmitt

Chemistry & Biochemistry Student Scholarship

Cancer cells preferentially undergo glycolysis in aerobic environments, a phenomenon termed the Warburg effect. Malate dehydrogenase (MDH) catalyzes the reversible interconversion of malate and oxaloacetate. Human cytosolic malate dehydrogenase (hMDH1) isoform 3 is involved in the malate-aspartate shuttle (MAS), which oxidizes cytosolic NADH. hMDH1 is implicated in high aerobic glycolysis in cancer cells because NAD is a necessary cofactor for glycolysis. Thus, hMDH1 is a promising molecular target for cancer treatment. A single proline residue at position 110 in the mobile active site loop of hMDH1 was mutated to a serine with the intention of altering the enzyme’s substrate specificity. …


Development And Kinetic Survey Of A G148t Mutant Human Cytosolic Malate Dehydrogenase Isoform 3 Enzyme With Oxaloacetate And A-Ketoglutarate, Ethan N. Dionne Apr 2022

Development And Kinetic Survey Of A G148t Mutant Human Cytosolic Malate Dehydrogenase Isoform 3 Enzyme With Oxaloacetate And A-Ketoglutarate, Ethan N. Dionne

Chemistry & Biochemistry Student Scholarship

Cancer cells often use an altered metabolic pathway in which glycolysis, uncoupled from the citric acid cycle, serves as the primary source of ATP. To support cancer cell proliferation and growth, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) must have a constant source of NAD. While lactate dehydrogenase (LDH) in its conversion of pyruvate to lactate is a well-known source of cytosolic NAD for GAPDH activity, cytosolic malate dehydrogenase (MDH1) also plays a role in cell proliferation through its generation of cytosolic NAD by the conversion of OAA to malate. This development has implicated MDH1 in cancer cell metabolism and characterizing …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


The Impact Of Natural Rubber As A Toughening Agent On The Strength, Degradability, And Toxicity Of An Algae-Based Bioplastic, Megan Driscoll May 2021

The Impact Of Natural Rubber As A Toughening Agent On The Strength, Degradability, And Toxicity Of An Algae-Based Bioplastic, Megan Driscoll

Honors College

With the growing attention on widespread plastic usage and its impact on the environment and human health, the need for sustainable alternatives to petroleum-based plastics is more important than ever. One of the most promising solutions is bioplastics; however, current bioplastics struggle to compete with the material properties of petroleum- based plastics. Agar is a sustainable algae-derived hydrocolloid polysaccharide that can be used for bioplastics and biofilms. Despite promising characteristics, bioplastics made from agar are brittle. Common additives, such as the plasticizer glycerol, offset brittleness but sacrifice strength in return. This study looks at the impact of natural rubber as …


An Investigation Of K2 Mycobacteriophage Lysin A Proteins, Ethan Dionne Apr 2021

An Investigation Of K2 Mycobacteriophage Lysin A Proteins, Ethan Dionne

Chemistry & Biochemistry Student Scholarship

Major: Biochemistry
Faculty Mentor: Dr. Kathleen Cornely, Chemistry and Biochemistry


Towards The Development Of Low-Cost And Easily-Deployable Sensing Platforms For Phosphate, Maureen Pontarelli, Thomas Koch Apr 2020

Towards The Development Of Low-Cost And Easily-Deployable Sensing Platforms For Phosphate, Maureen Pontarelli, Thomas Koch

Chemistry & Biochemistry Student Scholarship

Maureen Pontarelli ’20
Major: Chemistry

Thomas Koch '20
Major: Biochemistry

Faculty Mentor: Dr. John Breen, Chemistry and Biochemistry


Periodic Table Club, Makayla Gill, Kailynn Jensen Apr 2020

Periodic Table Club, Makayla Gill, Kailynn Jensen

Honors Expanded Learning Clubs

This club is dedicated to teaching the generation of future scientists the periodic table. This is designed to be a unique take on a STEM club that uses the periodic table as a backbone for a solid foundation in chemistry.


Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson Mar 2020

Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson

Scholarship and Professional Work - LAS

Over 100 metabolic serine hydrolases are present in humans with confirmed functions in metabolism, immune response, and neurotransmission. Among potentially clinically relevant but uncharacterized human serine hydrolases is OVCA2, a serine hydrolase that has been linked with a variety of cancer-related processes. Herein, we developed a heterologous expression system for OVCA2 and determined the comprehensive substrate specificity of OVCA2 against two ester substrate libraries. Based on this analysis, OVCA2 was confirmed as a serine hydrolase with a strong preference for long-chain alkyl ester substrates (>10-carbons) and high selectivity against a variety of short, branched, and substituted esters. Substitutional analysis …


Ile126his And Lys129his Surface Mutations Aid In Purification Of Haemophilus Influenzae Carbonic Anhydrase Through Increased Metal Ion Affinity, Timothy Rigdon, Kathleen Cornely Jan 2020

Ile126his And Lys129his Surface Mutations Aid In Purification Of Haemophilus Influenzae Carbonic Anhydrase Through Increased Metal Ion Affinity, Timothy Rigdon, Kathleen Cornely

Chemistry & Biochemistry Student Scholarship

Carbonic anhydrase (CA) is an enzyme that plays a major role in the survival of many bacterial, chiefly Haemophilus influenzae. Because of its crucial role in bacteria, recent research has turned to CA as a possible target for drug development to kill bacteria and possibly cure different bacterial diseases. While research has focused on this drug target, the isolation and purification of specific types of CA has remained a major obstacle for further research. The current method of immobilized metal affinity chromatography (IMAC) with a Ni-NTA column is used widely for CA purification; however, the H. influenzae carbonic anhydrase …


Trophic Upgrading And Mobilization Of Wax Esters In Microzooplankton, Keyana Roohani, Brad A. Haubrich, Kai-Lou Yue, Nigel D'Souza, Amanda Mantalbano, Tatiana Rynearson, Susanne Menden-Deuer, Christopher Reid Aug 2019

Trophic Upgrading And Mobilization Of Wax Esters In Microzooplankton, Keyana Roohani, Brad A. Haubrich, Kai-Lou Yue, Nigel D'Souza, Amanda Mantalbano, Tatiana Rynearson, Susanne Menden-Deuer, Christopher Reid

Science and Technology Department Faculty Journal Articles

Heterotrophic protists play pivotal roles in aquatic ecosystems by transferring matter and energy, including lipids, from primary producers to higher trophic predators. Using Oxyrrhis marina as a model organism, changes to the non-saponifiable protist lipids were investigated under satiation and starvation conditions. During active feeding on the alga Cryptomonas sp., the O. marina hexane soluble non-saponifiable fraction lipid profile reflected its food source with the observed presence of long chain mono-unsaturated fatty alcohols up to C25:1. Evidence of trophic upgrading in O. marina was observed with long chain mono-unsaturated fatty alcohol accumulation of up to C35:1. To the best of …


Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté Nov 2018

Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté

Science and Technology Department Faculty Journal Articles

Past changes in the atmospheric concentration of carbon dioxide (PCO2) have had a major impact on earth system dynamics; yet, reconstructing secular trends of past PCO2 remains a prevalent challenge in paleoclimate studies. The current long-term PCO2reconstructions rely largely on the compilation of many different proxies, often with discrepancies among proxies, particularly for periods older than 100 million years (Ma). Here, we reconstructed Phanerozoic PCO2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as PCO2 increases. This concept has been widely applied to alkenones, but here, we …


Decreasing Phosphatidylcholine On The Surface Of The Lipid Droplet Correlates With Altered Protein Binding And Steatosis, Laura Listenberger, Elizabeth Townsend, Cassandra Rickertsen, Anastasia Hains, Elizabeth Brown, Emily G. Inwards, Angela K. Stoeckman Nov 2018

Decreasing Phosphatidylcholine On The Surface Of The Lipid Droplet Correlates With Altered Protein Binding And Steatosis, Laura Listenberger, Elizabeth Townsend, Cassandra Rickertsen, Anastasia Hains, Elizabeth Brown, Emily G. Inwards, Angela K. Stoeckman

Chemistry Faculty Publications

Alcoholic fatty liver disease (AFLD) is characterized by an abnormal accumulation of lipid droplets (LDs) in the liver. Here, we explore the composition of hepatic LDs in a rat model of AFLD. Five to seven weeks of alcohol consumption led to significant increases in hepatic triglyceride mass, along with increases in LD number and size. Additionally, hepatic LDs from rats with early alcoholic liver injury show a decreased ratio of surface phosphatidylcholine (PC) to phosphatidylethanolamine (PE). This occurred in parallel with an increase in the LD association of perilipin 2, a prominent LD protein. To determine if changes to the …


Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva Jan 2014

Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva

Dartmouth Scholarship

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys …


A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano Jan 2014

A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano

Chemistry Faculty Publications

The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate …


Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Dartmouth Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using …


Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac


Integrating Art And Science In Undergraduate Education, Daniel Gurnon Feb 2013

Integrating Art And Science In Undergraduate Education, Daniel Gurnon

Chemistry & Biochemistry Faculty Publications

The prevailing vision for undergraduate science education includes increased collaboration among teachers of science, technology, engineering and math (STEM) and an overhaul of introductory courses [1][4]. But by staying within the borders of STEM, are we overlooking connections between the arts and innovative science? Likewise, are we missing an important opportunity to inspire and inform nonscientists? Here we explore how weaving the visual arts into a science curriculum can both help develop scientific imagination and engage nonscientists. As an example, we describe a recent collaboration between artists and scientists to create a series of science-inspired sculptures.


N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner Sep 2012

N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner

Dartmouth Scholarship

SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on its …


Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg Nov 2011

Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.


A Lipid-Anchored Snare Supports Membrane Fusion, Hao Xu, Michael Zick, William T. Wickner, Youngsoo Jun Oct 2011

A Lipid-Anchored Snare Supports Membrane Fusion, Hao Xu, Michael Zick, William T. Wickner, Youngsoo Jun

Dartmouth Scholarship

Intracellular membrane fusion requires R-SNAREs and Q-SNAREs to assemble into a four-helical parallel coiled-coil, with their hydrophobic anchors spanning the two apposed membranes. Based on the fusion properties of chemically defined SNARE- proteoliposomes, it has been proposed that the assembly of this helical bundle transduces force through the entire bilayer via the transmembrane SNARE anchor domains to drive fusion. However, an R-SNARE, Nyv1p, with a genetically engineered lipid anchor that spans half of the bilayer suffices for the fusion of isolated vacuoles, although this organelle has other R-SNAREs. To demonstrate unequivocally the fusion activity of lipid-anchored Nyv1p, we reconstituted proteoliposomes …


An Assessment Of Stable Hydrogen-Isotope Analysis Methods To Assign Geographic Origin To Migratory Red-Tailed Hawks (Buteo Jamaicensis), Carla Marie Ahlschwede May 2011

An Assessment Of Stable Hydrogen-Isotope Analysis Methods To Assign Geographic Origin To Migratory Red-Tailed Hawks (Buteo Jamaicensis), Carla Marie Ahlschwede

Department of Environmental Studies: Undergraduate Student Theses

Stable-hydrogen isotopes are becoming an increasingly popular method of studying migratory birds, though sample preparation methods may affect results. In this study I examined feathers from red-tailed hawks (Buteo jamaicensis) to determine the relationship between measure of δD due to inter-feather variation or drying methods, assessed the accuracy of results by using two birds of known-origin and estimated possible natal origins of migratory red-tailed hawks. Two feathers per individual were taken from 81 wild hawks caught at Hitchcock Nature Center near Crescent IA and from 2 rescued red-tailed hawks, Raptor Recovery Nebraska near Eagle, NE. 119 of the …


Her2 Targeted Molecular Mr Imaging Using A De Novo Designed Protein Contrast Agent, Jingjuan Qiao, Shunyi Li, Lixia Wei, Jie Jiang, Robert Long, Hui Mao, Ling Wei, Liya Wang, Hua Yang, Hans E. Grossniklaus, Zhi-Ren Liu, Jenny J. Yang Mar 2011

Her2 Targeted Molecular Mr Imaging Using A De Novo Designed Protein Contrast Agent, Jingjuan Qiao, Shunyi Li, Lixia Wei, Jie Jiang, Robert Long, Hui Mao, Ling Wei, Liya Wang, Hua Yang, Hans E. Grossniklaus, Zhi-Ren Liu, Jenny J. Yang

Chemistry Faculty Publications

The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti Mar 2010

Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti

Dartmouth Scholarship

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay …


A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith Nov 2007

A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which …


The Yeast Orthologue Of Grasp65 Forms A Complex With A Coiled-Coil Protein That Contributes To Er To Golgi Traffic, Rudy Behnia, Francis A. Barr, John J. Flanagan, Charles Barlowe, Sean Munro Jan 2007

The Yeast Orthologue Of Grasp65 Forms A Complex With A Coiled-Coil Protein That Contributes To Er To Golgi Traffic, Rudy Behnia, Francis A. Barr, John J. Flanagan, Charles Barlowe, Sean Munro

Dartmouth Scholarship

The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with …


Photoreductive Dissolution Of Ferrihydrite By Methanesulfinic Acid: Evidence Of A Direct Link Between Dimethylsulfide And Iron-Bioavailability, Anne M. Johansen, Jennifer M. Key Jul 2006

Photoreductive Dissolution Of Ferrihydrite By Methanesulfinic Acid: Evidence Of A Direct Link Between Dimethylsulfide And Iron-Bioavailability, Anne M. Johansen, Jennifer M. Key

All Faculty Scholarship for the College of the Sciences

Within open‐ocean regions where excess macronutrients are present, phytoplankton growth is limited by the bioavailability of iron supplied to these areas primarily within atmospheric aerosols of crustal origin. However, processes that control the abundance of biologically accessible iron in these aerosols are largely unknown. Here we show that dissolution of ferrihydrite, a surrogate iron(oxy)hydroxide phase found in atmospheric waters, is enhanced in the presence of methanesulfinic acid (MSIA, CH3SO2H, a dimethylsulfide (DMS) oxidation intermediate) in laboratory irradiation experiments with aqueous suspensions that simulate marine aerosol particles. The increased release of soluble Fe(II) is attributed to a …