Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao Jan 2011

Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao

University of Kentucky Doctoral Dissertations

A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing.

As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It …


Computer Simulation Of A Hollow-Fiber Bioreactor: Heparan Regulated Growth Factors-Receptors Binding And Dissociation Analysis, Changjiang Zhang Jan 2011

Computer Simulation Of A Hollow-Fiber Bioreactor: Heparan Regulated Growth Factors-Receptors Binding And Dissociation Analysis, Changjiang Zhang

University of Kentucky Doctoral Dissertations

This thesis demonstrates the use of numerical simulation in predicting the behavior of proteins in a flow environment.

A novel convection-diffusion-reaction computational model is first introduced to simulate fibroblast growth factor (FGF-2) binding to its receptor (FGFR) on cell surfaces and regulated by heparan sulfate proteoglycan (HSPG) under flow in a bioreactor. The model includes three parts: (1) the flow of medium using incompressible Navier-Stokes equations; (2) the mass transport of FGF-2 using convection-diffusion equations; and (3) the cell surface binding using chemical kinetics. The model consists of a set of coupled nonlinear partial differential equations (PDEs) for flow and …


Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen Jan 2011

Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen

University of Kentucky Doctoral Dissertations

Genomic instability driven by non-allelic homologous recombination (NAHR) provides a realistic mechanism that could account for the numerous chromosomal abnormalities that are hallmarks of cancer. We recently demonstrated that this type of instability could be assayed by analyzing the copy number variation of the human ribosomal RNA gene clusters (rDNA). Further, we found that gene cluster instability (GCI) was present in greater than 50% of the human cancer samples that were tested. Here, data is presented that confirms this phenomenon in the human GAGE gene cluster of those cancer patients. This adds credence to the hypothesis that NAHR could be …