Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Discovery Of Novel Muraymycin Antibiotics And Insight Into The Biosynthetic Pathway, Zheng Cui Jan 2018

Discovery Of Novel Muraymycin Antibiotics And Insight Into The Biosynthetic Pathway, Zheng Cui

Theses and Dissertations--Pharmacy

New antibiotics with novel targets or mechanisms of action are needed to counter the steady emergence of bacterial pathogens that are resistant to antibiotics used in the clinic. MraY, a promising novel target for antibiotic development, initiates the lipid cycle for the biosynthesis of peptidoglycan cell wall, which is essential for the survival of most, if-not-all, bacteria. MraY is an enzyme that catalyzes the transfer and attachment of phospho-MurNAc-pentapeptide to a lipid carrier, undecaprenylphosphate. Muraymycins are recently discovered lipopeptidyl nucleoside antibiotics that exhibit remarkable antibiotic activity against Gram-positive as well as Gram-negative bacteria by inhibiting MraY. We conducted a thorough …


Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan Jan 2018

Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan

Theses and Dissertations--Pharmacy

A-102395 is a member of the capuramycin family of antibiotics which was isolated from the culture broth of Amycolatopsis sp. SANK 60206. A-102339 is structurally classified as a nucleoside antibiotic, which like all members of the capuramycin family, inhibits bacterial MraY (translocase I) with IC50 of 11 nM which is the lowest among the capuramycin family. A semisynthetic derivative of capuramycin is currently in clinical trials as an antituberculosis antibiotic, suggesting high potential for using A-102395 as a starting point for new antibiotic discovery. In contrast to other capuramycins, A-102395 has a unique arylamine-containing polyamide side chain. The biosynthetic …