Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson Jan 2023

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus (NNSV) that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. Despite the initial identification of HMPV in 2001, there are currently no FDA approved antivirals or vaccines available. Therefore, understanding the mechanism of HMPV replication is critical for the identification of novel therapeutic targets. A key feature in the replication cycle of HMPV and other NNSVs is the formation of membrane-less, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). Recent work on NNSV IBs suggests they display characteristics of biomolecular condensates formed …


The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith Jan 2023

The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein Tyrosine Phosphatase 4A3 (PTP4A3 or PRL-3) is an oncogenic dual-specificity phosphatase that drives tumor metastasis, promotes cancer cell survival, and is correlated with poor patient prognosis in a variety of solid tumors and leukemias. The mechanisms that drive PRL-3’s oncogenic functions are not well understood, in part due to a lack of research tools available to study this protein. The development of such tools has proven difficult, as the PRL family is ~80% homologous and the PRL catalytic binding pocket is shallow and hydrophobic. Currently available small molecules do not exhibit binding specificity for PRL-3 over PRL family members, …